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Abstract—The MEMOCODE design contest for 2012 is exact
substring matching: a simplified form of the DNA sequence
alignment problem. The challenge is to efficiently locate mil-
lions of 100-base-pair short read sequences in a 3-million-base-
pair reference genome. Contestants had a month to create a
fast system that ran on a given set of test data. Entries were
judged both on absolute time and the product of time and
system cost. The two winning groups, which were invited to
contribute papers describing their solutions, judiciously chose
algorithms that exploited powerful hardware. The two winning
entries employed a hash algorithm running on a Convey HC-
1 FPGA/multicore hybrid with an aggressive memory system
and a Burrows-Wheeler/hash hybrid running on a 12-core Intel
system was second.

Keywords-DNA sequence alignment; string matching; hard-
ware/software codesign; GPGPUs; Multicore; FPGAs

I. INTRODUCTION

Every year since 2007, the organizers of the MEM-
OCODE Design Contest have proposed a design problem
and invited teams from around the world to design and build
innovative hardware/software systems to solve the problem.
Past years’ problems were matrix multiplication [1], sorting
encrypted data [2], Cartesian-to-polar interpolation [3], deep
packet inspection [4], and network simulation [5].

This year’s problem comes from DNA sequence align-
ment. Modern high-speed DNA sequencers break an organ-
ism’s genome into millions of short pieces and read the (e.g.,
100) base pairs in each piece. The computational challenge
is to reassemble these pieces into the organism’s genome.

A typical first step in the alignment problem—the specific
problem for this year’s contest—is to find the locations
where the short sequences appear in a reference genome.
While this does not answer the real biological question (i.e.,
details of the organism’s complete genome sequence and
how it differs from others), it is a useful initial filtering step.

Efficiently coping with large amounts of data was the
key problem in this year’s challenge. The problem itself is
embarrassingly parallel and can easily be split into many
small sub-problems; the challenge is how best to do this
under limited memory and bandwidth. The human reference
genome is about 700 MB, but the short read sequence data
is easily ten times larger. While such data volumes fit easily
in modern mass storage (e.g., hard drives or flash memory),
and has just become practical for high-capacity DRAMs,
currently no single chip can store and process it all.

Reference Human: ≈ 3 billion base pairs

Short segment read:
≈ 100 base pairs

Millions of
segments

TGATTCCAC
TGATTACAC

Figure 1. The DNA sequence alignment problem: (not to scale) find the
locations, if any, where each segment read appears verbatim in the reference
sequence. The number of sequence reads is typically expressed as coverage:
the relative number of base pairs in the segment reads compared to the
actual (human) genome. 2× as many is low; 20× is “deep.”

Algorithm design was the other challenge. While string
matching is a well-studied computer science problem with
many known efficient techniques, many do not scale up to
the problem sizes considered here and are better-suited to
sequential processors. The winning entries (Section VI) used
hashing or the Burrows-Wheeler transform [6] to index the
reference genome.

An earlier revision of this paper served as the prob-
lem specification for the teams. In this version, I describe
the problem (Section II), the source and format of the
data contestants were to use (Section III), the reference
implementation I supplied (Section IV), the contest rules
(Section V), and finally a quick summary of the entries and
the results of the contest (Section VI).

II. THE PROBLEM

Fast DNA sequencing is at the cutting edge of biology
research. The goal is to quickly and cheaply read an organ-
ism’s entire genome, making it possible to check for disease-
causing mutations, look for evolutionary patterns, and a host
of other useful studies. Since the first human genome was
sequenced in 2007 [9], many far faster reading techniques
have been developed [10], leading to a deluge of data—the
subject of this year’s design competition.

The human genome consists of a sequence of roughly
three billion base pairs (bp). There are four different base
pairs (abbreviated G, A, T, and C), so each base pair can be
encoded in two bits, setting the size of the human genome
at about 700 MB of data—about a single CD’s worth.

Nobody knows how to read all the base pairs from a
single lengthy DNA molecule in sequence; instead, current

85978-1-4673-1313-1/12/$31.00 ©2012 IEEE



>1 dna:chromosome chromosome:GRCh37:1:1:249250621:1
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
...
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTAACCCTAACCCTAACCCTA
ACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTA
...
AACCAGGTCCAGGAAGAAGGTGCAAAGACAGCATTCCAGGTAAAAGAAACAGCTTGAACA
AAAAGTGTGTAGGGGAACCGCAAGCGGTCTTGAGTGCTGAGGGTACAATCATCCTTGGGG
AAGTACTAGAAGAAAGAATGATAAACAGAGGCCAGTTTGTTAAAAACACTCAAAATTAAA
...

Figure 2. Excerpts from the human reference genome [7] in FASTA format. Data lines are 60 characters long. “A,” “C,” “T,” and “G” each represent a
single base pair; “N” represents any base pair (i.e., is unknown). The ellipses (. . . ) were added to this figure for clarity; they are not part of the actual file.

@ERR050082.521 HS18_6628:6:2303:13171:165808#3/2
ATTCTCCTCCAAGGCTGCAGAGGGGGCAGGAATTGGGGGTGACAGGAGAGCTGTAAGGTCTCCAGTGGGTCATTCTGGGCCCAGAGATGGGTGCTGAAGC
+
:DDFGFCFHEELJMJHIFDEOHHFIKDFIK;CEILH@NIAK:LHIKMIJ9HILBJJGJII7HIHJFJJGCJFGI?CIGJEG@JKJFGGFIDG>DC=D?>>
@ERR050082.686 HS18_6628:6:2202:16159:5695#3/2
TTAATTTCACCAGTGCCTTGTTAACTGATGTATCATATGCATGGATTTTTCTTTTTTTCTTTTTTTTTTGACTTTTATTTTAGGTTCGGGGGTACACGTG
+
:FDGEFGHJJKLJMJKMKJMMIGMLKMILKJNMLLILNLKKJLHKKMHJJGKLJJJIJHLKJIHEJJJJCAJKIIJDHJID@JKJF@GI;I:>DC@B<=6

Figure 3. Two short sequence reads [8] in FASTQ format. Each sequence consists of four text lines. The first is essentially a comment, which names the
run and details about how this particular sequence was read. The second line is the sequence of base pairs, 100 per sequence in this case, coded as the
usual ATGC. The third line “+” is essentially unused. The fourth line encodes the quality of each base pair read, which we will ignore.

sequencing systems work by making many copies of a single
DNA molecule, breaking them up into many short pieces,
then reading a short, fixed number of base pairs (e.g., 100)
from each piece [10].

The alignment challenge is to reassemble these millions
of short sequences into the original 3 Gbp sequence [11].
The whole process is like making thousands of copies of a
single book, shredding them, and grabbing a few handfuls
of shredded paper at random and trying to reconstruct the
text of the book. An additional complication: the copies are
not really identical—a handful of misprints always occur.

One thing that helps the alignment process is that human
DNA sequences are largely identical, differing by only
about 0.1% (roughly one base pair out of a thousand), and
that a handful of individuals’ genomes are already known.

This year’s design problem was a data-intensive but
algorithmically simple part of the DNA sequence alignment
problem: given a reference human genome and millions of
short read sequences, report how many times and where
each short read sequence appears exactly in the reference
genome (Figure 1). For the Unix-minded, this is something
like running fgrep on a 700 MB file with a million short
patterns to match. A complete reassembly algorithm would
use this as a starting point to filter out already-known parts
of the genome then follow it with an inexact matching step.

The string-matching problem is very well-studied, and
there has also been significant work on the sequence align-
ment problem, e.g., a number of open-source solutions

already exist [12], [13], [14]—see the survey by Li and
Homer [11]. The reason to consider it here is that the
problem is not considered “solved” when the corpus (pun
intended) and the number of search patterns is this large.

The reference solution I supplied (see Section IV) was
naı̈ve and brute-force; good solutions were much more
clever. Memory capacity constraints are paramount: while
it may be possible to hold the whole reference genome
in memory, holding all the short sequences may not be
practical. Another fundamental question is what sort of
indexing, if any, to do. The contest rules say time spent
preprocessing (e.g., indexing) the reference sequence did not
count since the same reference sequence can be used for any
human DNA.

III. DATA ISSUES

Contestants were instructed to use data collected as part
of the 1000 Genomes project [15], whose goal is to read
the DNA of 1000 individuals across the globe. They have
collected a lot of DNA sequence data, made it public, and
aligned some of it. The following information comes mainly
from the README files on their well-organized FTP site.

A. The Reference Genome

The reference genome is a gzip-compressed file in FASTA
format: a text header followed by a text representation of the
base pairs. Figure 2 shows a snippet of the (uncompressed)
reference genome file.
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0: 0
1: 1
2: 2
3: 3
4: 3
5: 8
6: 10
7: 19920 + 2 others
8: 1130
9: -

Figure 4. Output from running the reference implementation on the
supplied test case. For each sequence (their indexes are listed on the left), it
lists the index, in base pairs, where the sequence was found in the reference
genome, which may be 0 (in the case of sequence 9), 1 (sequences 0–6,
and 8), or more (sequence 7).

B. Short Sequence Reads

The 1000 Genomes project has a lot of short sequence
read data, all in gzip-compressed FASTQ format, an example
of which is shown in Figure 3. The project has collected
lots of short sequence read data from different individuals:
its goal is 1000, as its name suggests.

Because of coverage (the redundancy it implies) and
accompanying accuracy information, the short sequence read
data is much larger than the reference genome, even though
both ultimately contain the same amount of information. For
example, while the human reference genome is 803 MB
(compressed), the data for the NA06985 individual totals
about 36 GB.

IV. THE REFERENCE IMPLEMENTATION

The reference implementation I supplied to contestants
contains a brute-force DNA sequence aligner implemented
in C along with some small test cases. It compiles and runs
under 32- and 64-bit Linux and other Unix-derived operating
systems. The full program uses low-level Unix I/O facilities
(e.g., open(), stat(), and mmap()), but the core string searcher
(match() in align.c) only uses C library routines malloc() and
memcmp(), both of which could be replaced.

The reference implementation does exact substring match-
ing, looking for identically-sized short read sequences
(e.g., 100 base pairs each) against a (long) reference genome.
At the end, for each sequence, it reports how many times the
sequence was found and, if it was found more than once in
the reference genome, the index of the last match, although
returning the index of any match was allowed when there is
more than one. Figure 4 shows the output from the reference
implementation running on the included testcase.

Both the reference genome and the sequences are stored
on disk and in memory in a packed (but not compressed)
form in which each byte holds four base pairs, two bits per
base, with the LSB holding the first base, the next base in
the next two bits, and so forth. The reference implementation

includes simple format conversion programs fasta2bin and
fastq2bin that convert textual FASTA and FASTQ files into
this packed binary format, documented in the source files.

The reference implementation is a brute-force string
matcher: it maintains a buffer through which the entire
reference genome is shifted one base pair at a time. The
contents of this buffer is repeatedly compared to every short
read sequence; matches are recorded. The complexity in
this implementation arises from the packed representation,
chosen to enable multiple base pairs to be compared in
parallel and to keep the memory footprint within a few
gigabytes.

V. THE CONTEST

The reference implementation defined the inputs and
outputs for the contest. Solutions had to start with the packed
binary form of the reference genome and sequence read
data and report their results in the textual format defined in
Figure 4 and in the reference implementation. Each team’s
results had to match those from the reference implementation
exactly except for sequences that appear more than once in
the reference genome (e.g., sequence 7 in Figure 4). In these
cases, the solution could report any matching index, i.e., may
choose one non-deterministically.

A. Test Data

Teams used the human reference genome from the 1000
Genomes website [7], but were only told which read se-
quences to use at the end of the contest. They were, however,
told the read sequences would be one of the individuals from
the 1000 Genomes project and each read sequence will be
exactly 100 base pairs. Teams were told to use data from
the NA06985 individual for testing purposes. Thus, solutions
could be tuned to only work with the given human reference
genome but had to accept fairly arbitrary short read sequence
data.

B. Metrics

Two metrics—runtime and cost—were considered when
judging the performance of designs.

Runtime was the wall-clock time from when delivery to
the platform of the packed, binary short sequence data begins
to when all the sequence matching information (e.g., as in
Figure 4) has been returned to mass storage. In particular,
time taken to run gunzip and fasta2bin, and fastq2bin to
process sequence data was not counted in the total time.

Furthermore, any time spent loading or indexing the ref-
erence genome data was not counted in the total. Solutions
could thus assume the reference genome rarely changed but
the short sequence read data is fresh each time.

While teams were asked to match all the short sequence
reads for a particular individual, certain teams opted (e.g., to
reduce memory requirements) to search for only a fraction
of the supplied short sequence data and have their final
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Table I
SUBMISSION STATISTICS, ORDERED BY RUNTIME

Group Platform Cores/ Memory Algorithm Runtime Cost Time-Cost
Threads (GB) (s) (USD$) ($× s)

Iowa State University Convey HC-1 64 Hashed reference sequence 8.9×10−1 67,100 6.0×104

IPM HPC, Iran 2 Intel Xeon X5650 12/24 48 Burrows-Wheeler/hash hybrid 2.2×101 2,355 5.2×104

IPM HPC, Iran Intel Xeon X5650 6/12 16 Burrows-Wheeler 3.0×102 3,000 9.0×105

Iowa State University 23 Nvidia GTX 480 23/11040 35 Prefix table 1.8×104 27,800 5.1×108

Shahid Beheshti University, Iran Intel Core i7 2600K 4/8 8 Hash/tree hybrid 2.4×104 1,800 4.3×107

IPM HPC, Iran Nvidia Tesla C2050 1/448 9 Parallel brute-force search 6.2×106 1,850 1.1×1010

KAIST, Korea 8 Nvidia Tesla M2050 8/3584 24 Hashed reference sequence 6.7×106 8,000 5.4×1010

Sungkyunkwan University, Korea Nvidia GT 530 1/96 1 Parallel brute-force search 3.1×108 50 1.6×1010

University of Tehran, Iran Altera DE2-115 FPGA 0.1 Parallel brute-force search 7.2×108 305 2.2×1011

Notes: The Intel chips are general-purpose multicore processors: the X5650 has 6 cores; the Core i7 2600K has 4.
The Nvidia chips are general-purpose graphics processors (GPGPUs).
The Convey HC-1 combines a Xilinx Virtex 5 FPGA with an Intel Xenon dual-core processor and 8 DDR2 memory controllers.
Most runtimes were extrapolated from reported numbers based on the fraction of short sequences run.
Figures for memory represent aggregate system DRAM capacity; some numbers are estimates based on self-reported system descriptions.

runtimes de-rated by the fraction of sequences they actually
ran, e.g., if a team chose to search for only 10% of the read
sequences, their final runtime was multiplied by ten.

The cost of each solution was its price in US dollars,
specifically the lesser of its academic or retail price, or if
neither were available, a number estimated by the judges.

For the purposes of cost calculation, a host workstation
was not counted if all it did was supply the source se-
quence read data (e.g., by running gunzip and fastq2bin
and receive the results). It could also be used to index
the reference genome without being considered part of the
total system cost. However, if the workstation performed
additional indexing or preprocessing of the sequence data,
it was considered part of the system for cost purposes.

C. The Unlimited Class

One way to win the contest was to have the shortest net
runtime, as defined above. In this class, platform cost, power
consumption, and other metrics were ignored.

D. The Normalized Class

In the second class, the winner was the one with the
smallest runtime-cost product; a team whose solution could
sequence everything in 20 hours on a $100 platform was
equivalent to a $200 platform that took 10 hours. A single
team could win in both the unlimited and normalized classes.

E. Schedule

Teams were given the reference design and this prob-
lem description on March 1st, 2012. On April 1st, 2012,
teams were told which individual from the 1000 Genomes
project they are to sequence (i.e., which subdirectory of
the 1000genomes website to download and start process-
ing). Within a week, teams were expected to report the
total time it took their solution to process all the binary-
formatted short read sequence data to when it completed
reporting match information in the form reported by the

reference implementation. Any indexing or preprocessing of
the reference genome could be performed before April 1st
without it counting towards runtime.

F. Suggested Platforms

Teams were told to consider, but were not limited
to, FPGA-based development platforms such as Xilinx’s
XUPV5, or Altera’s DE4, GPGPUs such as those supporting
NVIDIA’s CUDA platform, the Sony Playstation 3 (i.e.,
using the CELL processor), or even clusters of off-the-shelf
x86-style servers. In the unlimited class, runtime was the
only criterion; in the normalized class, total system cost was
also considered.

VI. RESULTS

Table I lists the final submissions, ordered by total run-
time. The two winning teams are listed first: one from Iowa
State University, which won the unlimited class, and one
from the Institute for Research in Fundamental Sciences
(IPM) in Iran, which won in the normalized class.

Estimated runtimes of the solutions spanned nearly nine
orders of magnitude: the fastest system took less than a
second; the slowest would have taken nearly 23 years.
System costs varied more modestly (less than a factor of
1000), but the time-cost product still varied about six orders
of magnitude.

Teams ultimately employed four different kinds of plat-
forms: traditional Intel multicore server-class machines,
Nvidia general-purpose graphics processor units (GPGPUs),
a low-end Terasic/Altera DE2-115 FPGA board, and a
Convey HC-1—a high-end multicore/FPGA hybrid with a
very aggressive memory system. The costs for these ranged
from fairly low (a single GPU card with a retail price of
about $50) to quite high (the Convey retails for $67,100).

Memory capacity and algorithm choice appear to have
been the determining factors. In general, solutions using
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more memory reported shorter runtimes. While a basic
constraint was the need to hold the whole reference sequence
in memory at once, the more successful solutions used
vastly more memory than absolutely necessary to store
large indexes of the reference sequence. The winning group,
which used the HC-1, built a 22.5 GB minimal perfect hash
table for every 100 bp subsequence in the reference; other
successful groups also built elaborate data structures for
representing the reference sequence. By contrast, groups that
implemented brute-force search had much slower solutions.
One exception was the entry from KAIST: although it
also used a hash table, the team reports their solution was
hampered by excessive time spent copying data between
CPU and GPU memory.

Despite this appearing to be an “embarrassingly parallel”
problem, which would suggest it would be easy to use a
lot of hardware to solve it quickly, the time-cost results
suggest otherwise. For such problems, doubling the amount
of hardware should halve the time while doubling the cost,
suggesting the time-cost product should stay constant, but
instead we observed many orders of magnitude difference
in time-cost products across the solutions. The two slowest
solutions (from SKKU and the University of Tehran) illus-
trated this: both used the brute-force-searching algorithm,
but per dollar, the FPGA solution was still dramatically
slower, perhaps because of memory bottlenecks.

Instead, algorithm choice was key to winning this contest.
Two of the top three entries used the Burrows-Wheeler
Transform (BWT) [6] to index the reference genome. The
BWT, a reversible string permutation, was originally in-
tended for data compression, since it tends to group iden-
tical characters into runs; Ferragina and Manzini [16] later
adapted it to string searching; Lam et al. [17] showed its
utility in DNA sequence matching.

VII. CONCLUSIONS

Nine teams from six institutions ultimately submitted
working solutions to the problem, whose speeds ranged
over nearly eight orders of magnitude. Algorithm selection,
coupled with sufficient memory resources and bandwidth,
ultimately determined the outcome.
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