
8	 This article has been peer-reviewed.� Computing in Science & Engineering

1521-9615/09/$25.00 © 2009 IEEE

Copublished by the IEEE CS and the AIP

R e p r o d u c i b l e
R e s e a r c h

M assive computation is transform-
ing science, as researchers from
numerous fields launch ambitious
projects involving large-scale com-

putations. Emblems of our age include

data mining for subtle patterns in vast data-•	
bases; and
massive simulations of a physical system’s com-•	
plete evolution repeated numerous times, as
simulation parameters vary systematically.

The traditional image of the scientist as a soli-
tary person working in a laboratory with beakers
and test tubes is long obsolete. The more accu-
rate image—not yet well recognized—depicts a
computer jockey working at all hours to launch
experiments on computer servers. In fact, today’s

academic scientist likely has more in common
with a large corporation’s information technol-
ogy manager than with a philosophy or English
professor at the same university.

A rapid transition is now under way—visible
particularly over the past two decades—that will
finish with computation as absolutely central to
scientific enterprise. However, the transition is
very far from completion. In fact, we believe that
the dominant mode of scientific computing has al-
ready brought us to a state of crisis. The prevalence
of very relaxed attitudes about communicating ex-
perimental details and validating results is causing
a large and growing credibility gap. It’s impossible
to verify most of the results that computational
scientists present at conferences and in papers.

The Crisis
To understand our claim, and the necessary re-
sponse, we must look at the scientific process
more broadly. Originally, there were two scientific
methodological branches—deductive (for example,
mathematics) and empirical (for example, statistical
data analysis of controlled experiments). Many sci-
entists accept computation (for example, large-scale
simulation) as the third branch—some believe
this shift has already occurred, as one can see in
grant proposals, keynote speeches, and newsletter
editorials. However, while computation is already

Scientific computation is emerging as absolutely central to the scientific method, but
the prevalence of very relaxed practices is leading to a credibility crisis. Reproducible
computational research, in which all details of computations—code and data—are
made conveniently available to others, is a necessary response to this crisis. The authors
review their approach to reproducible research and describe how it has evolved over time,
discussing the arguments for and against working reproducibly.

David L. Donoho, Arian Maleki, and Morteza Shahram
Stanford University
Inam Ur Rahman
Apple Computer
Victoria Stodden
Harvard Law School

Reproducible Research in
Computational Harmonic Analysis

January/February 2009 � 9

indispensable, it does not yet deserve elevation
to third-branch status because current computa-
tional science practice doesn’t generate routinely
verifiable knowledge. The scientific method’s cen-
tral motivation is the ubiquity of error—the aware-
ness that mistakes and self-delusion can creep in
absolutely anywhere and that the scientist’s effort
is primarily expended in recognizing and rooting
out error. Before scientific computation can be ac-
corded the status it aspires to, it must be practiced
in a way that accepts the ubiquity of error, and
work then to identify and root out error. Deduc-
tion and empiricism are powerful but error-prone.
Even very disciplined and cultivated branches of
science suffer notably from the problem of errors
in final, published conclusions.1 Vagueness, wan-
dering attention, forgetfulness, and confusion can
plague human reasoning. Data tend to be noisy,
random samples contain misleading apparent pat-
terns, and it’s easy to mislabel data or misinterpret
calculations. Beginning researchers in science face
a lengthy struggle to discipline their thoughts and
expressions and to identify and root out mistakes.
They must also adopt disciplined habits of collec-
tion, treatment, and data processing and develop
a profound understanding that measurement er-
ror causes mistakes in a substantial fraction of
conclusions. Even established empirical scientists
struggle when interpreting or processing a data-
set; obscure misunderstandings could invalidate
the analysis, or random noise could be confused
with meaningful signal. Mature responses to the
ubiquity of error have evolved: for deduction,
formal logic, and mathematical proof; for empiri-
cism, statistical hypothesis testing, and standard-
ized reproducibility information (data, materials,
and methods).

Like deduction and empiricism, computation
is also highly error-prone. From the newcomer’s
struggle to make even the simplest computer pro-
gram run to the seasoned professional’s frustration
when a server crashes in the middle of a large job,
all is struggle against error. In the world of com-
puting in general, not just scientific computing,
the ubiquity of error has led to many responses:
special programming languages, error-tracking
systems, disciplined programming efforts, orga-
nized program testing schemes, and so on. The
point we make is that the tendency to error is cen-
tral to every application of computing.

In stark contrast to the sciences relying on de-
duction or empiricism, computational science is
far less visibly concerned with the ubiquity of er-
ror. At conferences and in publications, it’s now
completely acceptable for a researcher to simply

say, “here is what I did, and here are my results.”
Presenters devote almost no time to explaining
why the audience should believe that they found
and corrected errors in their computations. The
presentation’s core isn’t about the struggle to root
out error—as it would be in mature fields—but is
instead a sales pitch: an enthusiastic presentation
of ideas and a breezy demo of an implementation.
Computational science has nothing like the elabo-
rate mechanisms of formal proof in mathematics
or meta-analysis in empirical science. Many users
of scientific computing aren’t even trying to fol-
low a systematic, rigorous discipline that would
in principle allow others to verify the claims they
make. How dare we imagine that computational
science, as routinely practiced, is reliable!

A Practical Response
Jon Claerbout saw this crisis coming more than
20 years ago. Working in exploration geophysics,
which requires data analysis and computational
algorithm development, he saw that the informa-

tion computational scientists conveyed in their
publications was seriously incomplete. Paraphras-
ing Claerbout you might say that “an article about
computational science in a scientific publication
is not the scholarship itself, it’s merely scholar-
ship advertisement. The actual scholarship is the
complete software development environment and
the complete set of instructions which generated
the figures.”2

Claerbout, together with his Stanford Explora-
tion Project team, developed a system for docu-
ment preparation that attempted to encapsulate a
body of work’s full scholarly content. When read-
ing an article using the special document viewer
his team created, you find yourself inside the com-
plete computational environment (code and data)
that generated the results that the article presents.
His group hyperlinked the code underlying the
figures in the papers to the document so that
readers could study and even rerun the code to
reproduce the results from scratch. Readers could
even play “what if” games, modifying the original
version’s parameters, to see how the author’s re-
sults would change.

Although most scientists today can more easily

We publish not just computational results

but also the complete software environment

and data that generated those results.

10� Computing in Science & Engineering

understand these concepts than 20 years ago, and
the technology is much easier to use today than it
was then, scientists still don’t widely practice or
routinely demand this approach.

Our Own Efforts
In the early 1990s, David Donoho learned of
Claerbout’s ideas and began to practice them in
his own research. Roughly speaking, Donoho
didn’t trust himself to turn out good work unless
his results were subject to the open criticism of
other researchers. He also learned from experi-
ence not to believe that graduate students were
doing the work they believed they were doing un-
less he studied and ran the code himself. Cross-
platform, high-level quantitative programming
environments, such as Matlab, were becoming
standard tools.

Donoho’s approach was to make sure that the
details underlying the datasets, simulations, fig-
ures, and tables were all expressed uniformly in
Matlab’s standard language and computing en-
vironment and made available on the Internet—
which was, at that time, becoming a standard
tool—so that interested parties could reproduce
the calculations underlying a particular paper.
He also decided to impose that discipline on
students. At the time, he was working in com-
putational harmonic analysis (wavelets, wavelet
packets, and time-frequency methods), and few
computational tools were available. After he and

his collaborators had written several papers on
wavelets, Donoho was able to combine all the
tools into a single package, Wavelab, which con-
tained a unified set of wavelet and time-frequen-
cy tools, and reproduced all the calculations in
those papers.

Wavelab is based on the Matlab quantitative
computing environment, which has a program-
ming language for manipulating matrices and
vectors as well as useful plotting tools. Matlab
runs on numerous operating systems, so it offers
a programming language that’s free of machine
dependencies. Wavelab is installed as a Matlab
toolbox and has been available online in some
version since 1993. The original version had
more than 700 files, including M-files, C-code,
data, and documentation—it has since grown.
For more information on Wavelab, see Jonathan
Buckheit and Donoho’s paper, “Wavelab and Re-
producible Research.”2

Although many Matlab toolboxes were available
before Wavelab’s release, it seems that Wavelab
was the first effort to provide a toolbox specifi-
cally designed to reproduce results in a series of
computational science papers. Research ethos
at the time (and mostly since) wasn’t to publish
a complete reproducible package. Instead, re-
searchers either did nothing to release algorithms
and data to the outside world, or they published
fragments of their environment, ignoring the
notion of true reproducibility. The purpose of
Wavelab was never to provide a complete “wave-
let toolbox” for general-purpose use. However,
because of the broad range of papers that were
reproduced in the original Wavelab release, the
package itself contained a fairly complete offer-
ing of wavelet transforms and time-frequency-
analysis tools. Teachers had also been using it and
had developed numerous pedagogical examples.
As a result, many users viewed it as free software
that competed with commercial packages. In fact,
the central motivation in the authors’ minds was
reproducibility; the papers in Wavelab became
a kind of benchmark because the papers fully
documented signal-processing techniques’ per-
formances in certain datasets. When develop-
ing other new techniques, researchers often used
the Wavelab datasets and performance measures
as a way to compare methods. Partly as a result,
Wavelab became highly cited. We found that
from 1996 to 2007, Wavelab received 690 cita-
tions from Google Scholar, and we studied 100
randomly selected citations in preparing this ar-
ticle (Figure 1 shows the citation count by year,
and Table 1 categorizes usage patterns).

C
ita

tio
n

co
un

ts

90

80

70

60

50

40

30

20

10

0

Years
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Figure 1. Citation counts for Wavelab by year. We found 690
citations in Google Scholar, with citations continuing from the mid
1990s until today.

January/February 2009 � 11

Why Do This?
Why did we feel it was important to proceed in this
way? Several reasons are mentioned in “Wavelab
and Reproducible Research,”2 the thrust being
that if everyone on a research team knows that
everything they do is going to someday be pub-
lished for reproducibility, they’ll behave differ-
ently from day one. Striving for reproducibility
imposes a discipline that leads to better work.

In pursuing full reproducibility, we fundamen-
tally produce code for strangers to use. Although
it might seem unnatural to help strangers—and
reluctance to do so certainly impedes the spread
of reproducible research—our term stranger really
means anyone who doesn’t possess our current
short-term memory and experiences. In the heat
of a computational project, we store many things
in short-term memory that we need at that mo-
ment to use the code productively. Developing for
a stranger means avoiding reliance on this soft,
transient knowledge and, more specifically, codi-
fying that knowledge objectively and reproduc-
ibly. Is it then really necessary to help strangers?
We think that it is. Only if we work as if a stranger
must use the code without complaint will we pro-
duce code that’s truly reproducible.

In fact, we needn’t think that we’re doing some-
thing unnecessarily altruistic by developing code
for mere strangers. There are some very impor-
tant strangers in our lives:

coauthors,•	
current and future graduate students,•	
new postdoctoral fellows,•	
anonymous referees of our papers and grant •	
proposals, and
future employers.•	

We call them strangers because they wouldn’t
share all the short-term information we’ve re-
cently accumulated in developing our current
computational results. In fact, years from now,
we ourselves will be such strangers, not remem-
bering the myriad small details that accumulated
in our minds during this project. It’s not uncom-
mon for a researcher who doesn’t follow repro-
ducibility as a personal discipline to forget how
the software in some long-ago project was used,
what its limitations were, or even how to gen-
erate an example of its application. In contrast,
a researcher who has worked reproducibly can
actually go to the Internet, find his own long-
ago work there, download it, and use it in the
same way that anyone else could. Thus, work-
ing reproducibly helps everyone, including our

future selves. It seems that striving for truly re-
liable computational results is inseparable from
dedicating our efforts to producing a package
that anyone can run from scratch to reproduce
our results.

Our Framework Broadens
We’ve now worked within the reproducibility
paradigm for 15 years, during which time we’ve
tried to get our collaborators, students, and post-
docs to participate. To help make this happen,
we’ve created a family of toolboxes following the
Wavelab framework:

Atomizer•	 , for sparse representation of signals by
ℓ1 minimization;
Beamlab•	 , for multiscale geometric analysis;
Sparselab•	 , for sparsity-seeking decomposition
and reconstruction;
Symmlab•	 , for multiscale analysis of manifold-
valued data; and
Spherelab•	 , for multiscale decomposition of data
on the sphere.

All these toolboxes share a common arrangement
of files and a common scheme for document-
ing and organizing the information. For more
information on our research and tools, see the
extended version of this article at www-stat.stan-
ford.edu/~wavelab/Reproducibility.htm. An au-
thor working on a novel project can easily adopt
the Wavelab framework: simply download one of
these packages, study its file structure, and treat
that structure as a model. Then, clone the gener-
al-purpose files in the package, rename them, and
edit them to create an entirely new package in a
different topic area.

Over time, the packages in question—partic-
ularly Wavelab—have grown through additions.
Although many of these additions have come from
doctoral students or postdocs in our group, we’ve
also had contributions from outsiders, see the Web
address in the preceding paragraph for URL links
to several such examples, including those that fol-

Table 1. Usage pattern analysis of Wavelab citations.*

Use pattern %

Used algorithms in Wavelab to process data 74

Used both algorithms and datasets in Wavelab 11

Used only datasets from Wavelab 3

Compared performance of algorithms with
algorithms in Wavelab

12

*Selected citations in Google Scholar classified by the way the citing article
used Wavelab.

12� Computing in Science & Engineering

low. The framework’s modular design is such that
it’s fairly easy to simply drop a new folder into a
toolbox and create a new distributable archive.
We’ve apparently inspired former students to de-
velop their own frameworks.

Emmanuel Candès at Cal Tech has worked with •	
doctoral students Laurent Demanet, Lixing Ying,
and Justin Romberg to produce two reproduc-
ibility-inspired packages—Curvelab for curvelet
analysis and ℓ1 Magic for ℓ1 minimization,
Xiaoming Huo in the School of Industrial Sys-•	
tems and Engineering at Georgia Tech has
released the package CTDLab, which solves
“connect the dots” problems.3

Researchers elsewhere have built packages that
build on our framework (for Web addresses, see
this article’s extended version, cited earlier):

Jalal Fadili, in the Groupe de Récherche en In-•	
formatique, Image, Automatique et Instrumen-
tation de Caen, has developed an open software
package called MCALab.
Stephane Mallat of Ecole Polytechnique has •	
written a major book using our approach,4 in
which he uses Wavelab to generate all the fig-
ures and examples—this code is included in re-
cent releases of Wavelab.

Books reach a major milestone when published in

a foreign language. The analogy for a software
package: translation to another computer lan-
guage. Astronomer Amara Graps developed the
“IDL Wavelet Workbench,”5 based partially on
the Wavelab package. IDL is a popular comput-
ing environment for astronomical data analysis.
We next briefly describe three recent toolboxes
developed in our framework.

Sparselab
Modern research in computational harmonic anal-
ysis has shown that many kinds of signal content are
highly compressible in an appropriate transform do-
main. Thus, images are compressible in the wavelets
domain, acoustic signals can be compressible in the
local cosine domain, and so on. This is the modern
information era’s central phenomenon—we exploit
it every time we download movies and music from
the Web or use a cell phone to view multimedia
content. Compressibility can be explained simply.
The transformed signal is sparse: many values are
essentially zero and can be ignored.

Sparsity has fundamental advantages beyond
mere data compression. Amazingly, an under-
determined system of equations might well have
many solutions but only one highly sparse solu-
tion.6,7 This is the foundation of compressed sensing,
a rapidly developing field driven by the discovery
that when a signal has a highly sparse transform,
the required number of measurements is propor-
tional not to the size of the uncompressed signal
but instead to the size of the compressed signal.8

Sparse representation is a rapidly developing
field. The ISI Thompson index classified the topic
of “sparse solution of underdetermined systems of
linear equations” as a new research front in May
2005. The journal IEEE Signal Processing named a
core paper reproduced by Sparselab, “Extensions
of Compressed Sensing,” as its most-cited paper in
2006.9 By our count, in 2008, roughly 50 papers
with some variant of the words compressed sensing
appeared in Magnetic Resonance in Medicine, and
the March 2008 issue of IEEE Signal Processing
magazine (circulation 20,000) was devoted to this
topic. Besides compressed sensing, Sparselab cov-
ers subtopics such as statistical model selection.
Ten researchers have contributed software, and
as many as three people contributed their time to
support and maintain the package. One of this ar-
ticle’s coauthors, Victoria Stodden, managed the
creation of this reproducible research software
package as a component of her doctoral thesis.10

Sparselab is both a vehicle for authors in the
field to make their papers fully reproducible and a
source of established problems and algorithms for

Figure 2. A recomputed and reproduced figure from the paper
“Extensions of Compressed Sensing.”9 The box in the middle lists all
the figure numbers in the paper; we reproduce here Figure 2 from
that paper, but we could reproduce any other figure by clicking
elsewhere in the list. Note the button in the lower right labeled
See Code; clicking here reveals the underlying source code that
generates this figure.

January/February 2009 � 13

sparse representation. We released Sparselab in
2006 at http://sparselab.stanford.edu, and the latest
version, Sparselab 2.1, has been downloaded more
than 7,000 times in 2008 alone. A casual search
turned up more than a dozen papers that have used
Sparselab to generate their results, and the tool is
still evolving through volunteer contributions.

The package has a user interface that goes be-
yond merely reproducing published results. It has
a convenient graphical interface that lets users
easily make variations on experiments in the pub-
lished papers; see Figure 2 for an example of this
user interface.

The core package has 663 files and folders,
mostly associated with articles. Sparselab also in-
cludes some code for general algorithms, such as
Michael Saunders’ primal-dual method for convex
optimization.

Reproducibility can accelerate progress in a
hot field and implicitly creates a source of chal-
lenging problems and datasets. Many research-
ers are interested in comparing their own novel
algorithms with the algorithms first published in
the Sparselab package. This, in turn, leads those
researchers to cite reproducible papers in Sparse-
lab. Some of those early researchers later contrib-
uted their own algorithms to the package, thus
making it even more authoritative as a source for
compressed sensing and related applications of
sparsity-seeking methods.

Symmlab
Traditionally, computational harmonic analysis
works with arrays of numbers. Many new tech-
nological and scientific datasets don’t contain
traditional numbers; instead, measurements pin-
point locations on curved surfaces and manifolds.
Human motion data provides a simple example.
The measurements quantify a configuration
of the principal joint angles in the human body
(elbows, wrists, and so on). Such data are not an
arbitrary collection of numbers, because the joint
angles must be mutually consistent. If we view
them as specifying points in a manifold, all the
consistency conditions are naturally in force. The
configuration manifold in question is a product
of numerous copies of the Lie groups SO(2) and
SO(3), one copy for each joint. Here, SO(k) refers
to the collection of orientations of a k-dimension-
al orthogonal coordinate set in Rk. The choice of
SO(2) versus SO(3) depends on the type of flexibil-
ity available in a specific joint. Aircraft orientation
data provide another example, in which the data
express the aircraft’s orientation as a function of
time. You can convert traditional aircraft orien-

tation coordinates—pitch, roll, and yaw—into an
SO(3)-valued representation (see Figure 3).

It turns out that you can model a very broad
collection of manifold-valued data using an el-
egant class of manifolds called Riemannian sym-
metric spaces. Such manifolds, in turn, permit
an elegant systematic notion of wavelet trans-
form.11 Figure 4 presents aircraft orientation
data’s SO(3)-valued wavelet coefficients. Sym-

0
50

100
150

200
250

Figure 3. SO(3)-valued data: aircraft orientation as function of time.
A tripod with blue, red, and green vectors indicates each instant’s
orientation. The wild variation in orientation near the series’ end
indicates that the airplane lost control and crashed.

Time
0

Sc
al

e

8

7

6

5

4

3

10.2 0.4 0.6 0.8

Figure 4. Aircraft orientation’s wavelet transform, organized by scale
(vertical axis) and time (horizontal axis). Each wavelet coefficient (not
presented here) is a Lie algebra SO(2) element; the display presents
each coefficient’s norm. The large coefficients at coarse scales and at
the series’ end at fine scales demonstrate that the aircraft’s motion
was smooth until control was lost, at which time motion became
energetic at all scales.

14� Computing in Science & Engineering

mlab, a Matlab toolbox, plays the same role for
symmetric-space-valued data that Wavelab plays
for more traditional data. It can reproduce “Mul-
tiscale Representations for Manifold-Valued
Data,” a paper by Inam Ur Rahman and his col-
leagues11 and Rahman’s thesis,12 and it might be
the first available toolbox for manifold-valued
data’s multiscale analysis.

Symmlab follows the Wavelab framework, with
valuable improvements related to developments in
later packages such as Sparselab. Compared to its
sister packages, there is a great deal of emphasis on
providing new and interesting datasets. Symmlab
raises awareness of manifold-valued data and
makes available tools to analyze such data. You
might even view the paper’s main contribution11
as the formalization of this need. Here, reproduc-
ibility is important more for the diffusion of the
datasets rather than the results.

The datasets available in the download come
from diverse sources:

weak-gravitational-lensing data from astronomy,•	
motion-capture data in animation,•	
aircraft-motion data from aviation,•	
time-varying-deformation-tensor data from geo•	
physics,
diffusion-tensor data from medical imaging,•	
subspace-tracking data from array signal proc•	
essing,
wind-direction and speed data from climatol-•	
ogy, and
synthetic-aperture-radar- (SAR-) interferomet-•	
ric data from remote sensing.

The Symmlab package is available at www-stat.
stanford.edu/~symmlab. It contains more than
100 M-files, including core algorithms, utili-
ties to generate synthetic data, and visualization
tools. The Web site contains instructions and
documentation for registering, downloading, in-
stalling, and using the package. Rahman and his
colleagues’ paper describes technical details about
the algorithms and can also be downloaded from
this Web site.12

This toolbox demonstrates an important ad-
vantage of reproducible research: reproducibility
is a way to rapidly disseminate new problems and
illustrate new data types. In this case, the person
downloading Symmlab might be uninterested in
wavelets per se but very interested in symmetric-
space-valued data and other fascinating applica-
tion areas. The interested reader can download,
install, verify, see the raw data, and learn about
the problems a reproducible paper addresses, rath-

er than the mathematical solutions it proposed.
Exact reproducibility has side effects from pub-
lishing the underlying data and the algorithm, not
just the intended result.

Spherelab
Traditional wavelet analysis concerns data that
take real values and are organized by a Cartesian
parameter such as time (for example, an equi
spaced sampling in time) or two-dimensional
space (for example, a regular Cartesian grid in
the plane). However, in the Earth sciences, avia-
tion, atmospheric sciences, and astronomy, many
important datasets measure properties of various
locations on the sphere. Such settings require
wavelet transforms adapted to spherically orga-
nized data.

There are many systems of coordinates on the
sphere. The Healpix system is the basis for much
recent work in observational cosmology (http://
Healpix.jpl.nasa.gov). The major astronomical
organizations—NASA and the European South-
ern Observatory—adopted the Healpix system
to organize and process their data. They spon-
sored an open source software package perform-
ing Healpix manipulations; it includes Fortran
90, IDL, and C++ sources. Although relatively
new and little known to outsiders, scientists and
engineers in many other fields could profitably
use Healpix.

The article “Multiscale Representation for
Data on the Sphere and Applications to Geo
potential Data”13 develops wavelet representations
for Healpix-organized data. Spherelab is a Matlab
toolbox that lets readers reproduce calculations
from that paper. Morteza Shahram developed
Spherelab as part of his postdoctoral fellowship
at Stanford; his sponsor wanted him to develop a
new kind of wavelet for spherical data that would
cooperate with traditional spherical harmonics
expansions. Astronomers developed the Healpix
grid as a pointset on the sphere so that researchers
could perform fast spherical harmonics expansion
evaluation; this makes the Healpix grid particu-
larly natural for wavelet development that cooper-
ates with spherical harmonics.

Because of sponsor interest, Shahram specifi-
cally focused Spherelab on geopotential applica-
tions, where researchers must evaluate different
geo-related quantities and improve current geo-
potential models as they collect new measure-
ments. The main deliverable was a system for
compressing and decompressing a geopotential
field on the sphere much more rapidly than possi-
ble by traditional spherical harmonics expansions.

January/February 2009 � 15

Shahram’s article13 demonstrates that Spherelab
achieved this milestone, and reproducing those
results verifies this.

Spherelab should be an easily accessible and
useful tool for non-geopotential applications,
such as 3D object rendering in computer graphics.
Spherelab includes tools for conversions between
Healpix and Healpix wavelets, refinement schemes
on the sphere, statistical analysis, demos, test files,
and so on. Overall, this package has roughly 150
main files and about the same number of test files.
Figure 5 shows a multiscale decomposition of the
global geopotential.

Spherelab demonstrates that reproducibility is
a way for research sponsors to ensure that funded
research will assume tangible forms. In this case,
the sponsor wasn’t at all interested in the academic
paper but rather in the software producing results
in that paper. The sponsor could download, in-
stall, verify proper code function, and see that his
or her money was well spent.

Reproducibility as
Software Publishing
Full-blown reproducibility requires publishing
code to regenerate computational results. Con-
sequently, an adherent reproducibility becomes a
software publisher. This could be a new experi-
ence for academics, and it surely adds a new set of
issues to deal with—here are a few.

Tech Support
We hear many positive comments from our software
users, but several times a year, we hear of problems
in one of our packages. Typically, these are mun-
dane issues, most frequently related to installation.
Occasionally, more serious issues occur, often to do
with the release of a new version of Matlab.

Tech support is both a burden and an opportu-
nity. We often assign tech support tasks to gradu-
ate students who are just starting their doctoral
research. This gives the student a chance to re-
alize early on that strangers really will download
and try to use published code and that mistakes in
such code will lead to problem reports. This expe-
rience, we believe, makes students aware that it’s
important to do high-quality and lasting work in
their software development efforts. They quickly
realize that we really do mean it when we say all
their computational work might someday be sub-
ject to public scrutiny.

Code Maintenance
Much of the original Wavelab package’s Matlab
code was written 15 years ago, but still runs cor-

rectly. We needed to change a few basic utility
functions over the years, but otherwise, much of
the code still runs without problems. This vali-
dates Matlab’s role as a uniform computational
environment for delivering reproducibility across
hardware and operating system variations.

The bulk of the work involved in maintaining
the code concerns problems that have arisen with
major changes in Matlab or in the underlying op-
erating system. This, again, isn’t all bad: gradu-
ate students in the early stages of their doctoral
careers assigned to maintenance tasks will learn
that we intend to keep the code working for many
years to come and will learn about potential prob-
lems involved in doing so. This awareness can
prepare students to do a better job in their own
future projects.

Maintaining a Web Presence
Of course, reproducibility means publication
over the Internet. This requires setting up and
maintaining a Web site, which again can be in-
formative and educational but occasionally time-
consuming. However, it seems to be getting easier
all the time.

Reflections
Fifteen years of experience with reproducibility
provoked numerous discussions with other re-
searchers about the need for and effectiveness of
this initiative. We offer a few take-away points.

Figure 5. Multiscale decomposition of global geopotential using
Healpix wavelets. The new high-resolution EGM-06 dataset became
available in 2006; it’s used in aircraft navigation and contains
unprecedented data density. Different panels represent different
scales of the Healpix wavelets decomposition; fine-scale features near
mountain ranges and continental boundaries are evident.

16� Computing in Science & Engineering

Has It Worked?
Reproducible research has impact. Google Scholar
displays thousands of citations of the core papers
reproduced by Wavelab and Atomizer; there are
already hundreds of citations of Sparselab’s still
very recent core papers. Many people have now
used the software in these packages, which ap-
pears to perform as originally hoped. This is what
reproducibility really delivers.

When Did It not Work?
Numerous examples of reproducible research
emerged from our efforts over the past 15 years,
but we can cite examples of reproducibility. Ex-
ceptions fall in three categories:

Postdocs•	 . By and large, postdocs are in a hurry
to publish and would prefer to work the way in
which they’re accustomed rather than absorb
some new way of working—and who can blame
them?
Theorists•	 . For the most part, a theory paper
might have a few diagrams in it and perhaps a
numerical calculation, but the theory student
probably hates computing anyway and sees no
need to develop more disciplined ways of doing
computational research.
One-off projects•	 . We did a few computational
projects that might have benefited from repro-
ducibility, but were too small-scale to justify
building an entire toolbox that must then be
maintained. Also, there was no prospect of any
of the authors continuing their research in the
given direction, so motivation for the required
investment was very weak.

An advisor can’t force reproducibility on collabo-
rators. Researchers must believe that reproducibil-
ity is in their best interest. Postdocs, in particular,
are generally panicked about their future pros-
pects and tend to be short-sighted—although not
always: Thomas Yu, Georgina Flesia, and Morte-
za Shahram prove that some postdoctoral scholars
are willing to work reproducibly.

Quick Answers to Knee-Jerk Objections
Many researchers exhibit an instinctive aver-
sion to working reproducibly; when they vocalize
their instincts, we give them the following win-
ning responses.

Reproducibility takes time and effort. Response:
Undeniably true. If our only goal were getting
papers published, we would get them published
sooner if we didn’t have to also worry about pub-

lishing correct and polished code. Actually, our
goal is to educate future researchers; this takes
time and requires effort. Moreover, if we view
our job in graduate education as actually review-
ing and correcting students’ work, this is dramat-
ically easier to do if they work reproducibly—so,
in many cases, there’s actually less total time and
effort than otherwise.

No one else does it, so I won’t get any credit for it.
Response: Partly true. Few people today work
reproducibly. However, for exactly this reason, if
your code is available, your work will get noticed
and actually used, and because it’ll get used, it’ll
eventually become a reliable tool. Would you pre-
fer that other researchers not trust your work or
ignore it or that someone else’s implementation of
your idea become better known simply because
they make it available?

Strangers will use your code to compete with you. Re-
sponse: True. But competition means that strang-
ers will read your papers, try to learn from them,
cite them, and try to do even better. If you prefer
obscurity, why are you publishing?

My computing environment is too complicated to
publish like this. Response: This seems a winning
argument if you must work on a 10,000-node clus-
ter using idiosyncratic hardware. But if so, should
anyone believe that your obscure computing envi-
ronment is doing what you say it does? Also, how
can you believe it? Shouldn’t you test a subset of
your computations in a standard environment, in-
stead of in an idiosyncratic one, and then verify
that you obtained identical results? Isn’t repro-
ducibility more important in this case, not less?

Sober Answers to Thoughtful Objections
Some researchers have been able to vocalize
thoughtful objections to reproducibility; here are
a few such objections, together with what we view
as winning arguments.

Reproducibility undermines the creation of intellectu-
al capital. Instead of building up a comprehensive
set of tools in a lab over years, you give the tools
away for free, before they ripen. This prevents a
researcher from developing a toolkit in the course
of a career.

Response: A postdoc could argue this with some
justification, but not a senior researcher. For a se-
nior researcher running a lab in which doctoral
students come for a time and then leave, the only
way to actually ensure the creation of valuable

January/February 2009 � 17

capital is to require students to work reproducibly,
so that something of value can be created under
the scrutiny and emendation of others—including
the senior researcher. For postdocs specifically:
if you intend to someday be a senior researcher,
shouldn’t you learn today how to best organize
substantial computational projects in a way that
you and your colleagues can benefit from them
in the future? Won’t your skills impress potential
employers more if you can show them that your
work is reproducible and transparent to them?
Won’t potential senior collaborators view you as
a more valuable partner if they believe they can
work transparently with code that you develop?
Isn’t getting noticed a problem for postdocs?
Wouldn’t other people using your code be the
same as getting noticed?

Reproducibility destroys time-honored motivations for
collaboration. Traditionally, science is developed
through collaboration in which scientists visit
each others’ laboratories and share tools and ideas
in quid pro quo arrangements. This promotes
the spread of ideas through close human contact,
which is both more humane and more likely to
lead to educational and intellectual progress. If
people don’t need to collaborate because they can
just download tools, science’s social fabric is weak-
ened. As science is primarily a social entity, this is
quite serious.

Response: This is the intellectual capital argu-
ment in disguise. Reproducibility is important
within one laboratory or a team of investigators
or even for future use of the same code by the
same investigator. If you were working in a secret
establishment, air-gapped to the outside world,
working reproducibly would still make sense.
The issue is thus not reproducibility, but wide-
spread publication. You always have the option
to work reproducibly but then modify or skip the
last step—namely, giving away your code. You
can even provide remote, partial, controlled ac-
cess to the computing environment underlying a
research project. The traditional approach is to
publish only the binary code and not your calcu-
lation’s source code. A more modern approach is
to set up a Web server that lets outsiders access
proprietary algorithms in client-server fashion.
Outsiders would not see source code of key algo-
rithms but would instead upload their own data-
sets to the server that those algorithms would
process. Upon completion, outsiders would then
download results from the server. This server
architecture also solves the problem of keep-
ing data private while letting others reproduce

calculations. The server could apply algorithms
to preselected private datasets that reside on the
server only. The server architecture lets others
check an implementation’s accuracy and timing
results while not giving away proprietary algo-
rithms and data.

Reproducibility floods journals with marginal science.
People will just download reproducible papers,
make one tweak, and then modify the original
paper in a few lines and resubmit a new paper.

Response: This phenomenon is probably real (our
conclusion from anecdotal evidence), but trivial
mechanisms exist for this problem, such as routine
rejection of papers embodying tiny variations.

True reproducibility means reproducibility from first
principles. It proves nothing if I point and click
and see the numbers I expect to see. It only proves
something if I start from scratch and build my
version of your system and get your results with
my implementation.

Response: If you exactly reproduce my results
from scratch, that’s quite an achievement! But it
proves nothing if your implementation fails to
give my results because we won’t know why it
fails. The only way we’d ever get to the bottom of
such a discrepancy is if we both worked reproduc-
ibly and studied detailed differences between code
and data.

C laerbout’s original idea envisioned
people working from a hyperdocu-
ment interface where, as they read an
article, they could click on a figure,

see the underlying code, and study or even rerun
it. Our approach falls far short of this Utopian vi-
sion. We give the sophisticated Matlab user the
ability to repeat our computations, access our M-
files, and access our datasets.

Many people who find reproducibility interest-
ing do so for reasons we wouldn’t have predicted—
that is, they want to understand one small detail
or look at one aspect of a dataset. A fancier user in-
terface might make the package less useful to the
people really interested in reproducing computa-
tional science and really capable of understanding
what’s going on.

Nevertheless, we can see many ways to modern-
ize our framework. A principal development of the
past five years is the spread of social networking,
Wikipedia, SourceForge, and related phenomena.
Deploying such ideas in connection with repro-
ducible research might let anonymous users post

18� Computing in Science & Engineering

improvements to packages on their own, without
real involvement from our own group. Instead, we
now require that users who want to add an im-
provement to one of our packages contact us and
work with us. At the moment, we don’t see any
reason to abandon our old-fashioned approach—
but we could be admittedly behind the times.�

Acknowledgments
The US National Science Foundation partially sup-
ported our work through its statistics and probability
program (David Donoho and Iain Johnstone, co-PIs;
DMS 92-09130, DMS 95-05150, DMS 00-772661,
and DMS 05-05303), its optimization program (Ste-
phen Boyd, PI), its focused research group (Multi-
scale Geometric Analysis, FRG DMS-0140698, David
Donoho, PI), an information technology research
project, a knowledge diffusion initiative project (Amos
Ron, PI; KDI Towards Ideal Data Representation; and
ITR Multiresolution Analysis of The Global Internet),
and its signal-processing program. In addition, the
US Air Force Office of Scientific Research partially sup-
ported our work through a multi-university research
initiative project (David Castanon, PI); as did the Of-
fice of Naval Research (Comotion: Claire Tomlin, PI).
Finally, DARPA partially supported our work through
three projects: Efficient Mathematical Algorithms for
Signal Processing, 1998–2000; Efficient Multiscale
Methods for Automatic Target Recognition, 2001–
2002; and GeoStar: Efficient Multiscale Representa-
tion of Geopotential Data, 2005–2007. Thanks to
the program officers at these agencies for guidance
and interest; we only mention a few: Mary Ellen Bock,
Doug Cochran, John Cozzens, Dennis Healy, Reza
Malek-Madani, Wen Masters, Jong-Shi Pang, Carey
Schwartz, Jon Sjogren, Gabor Szekely, Grace Yang,
and Yazhen Wang.

References
J.P.A. Ioannidis, “Why Most Published Research Findings are 1.	
False,” PLoS Medicine, vol. 2, no. 8, 2005, pp. 696–701.

J. Buckheit and D.L. Donoho, “Wavelab and Reproduc-2.	
ible Research,” Wavelets and Statistics, A. Antoniadis, ed.,
Springer-Verlag, 1995, pp. 55–81.

E. Arias-Castro et al., “Connect the Dots: How Many Ran-3.	
dom Points Can a Regular Curve Pass Through?,” Advances
in Applied Probability, vol. 37, no. 3, 2005, pp. 571–603.

S. Mallat, A 4.	 Wavelet Tour of Signal Processing, 2nd ed., Aca-
demic Press, 1999.

A. Graps, “An Introduction to Wavelets,” 5.	 IEEE Computational
Sciences & Eng., vol. 2, no. 2, 1995, pp. 50–61.

D.L. Donoho and X. Huo, “Uncertainty Principles and Ideal 6.	
Atomic Decomposition,” IEEE Trans. Information Theory, vol.
47, no. 7, 2001, pp. 2845–2862.

D.L. Donoho, “For Most Large Underdetermined Systems of 7.	
Linear Equations the Minimal ℓ1-Norm Solution Is also the
Sparsest Solution,” Comm. Pure and Applied Mathematics,
vol. 59, no. 6, 2006, pp. 797–829.

D.L. Donoho, “Compressed Sensing,” 8.	 IEEE Trans. Information
Theory, vol. 52, no. 4, 2006, pp. 1289–1306.

D.L. Donoho and Y. Tsaig, “Extensions of Compressed Sens-9.	
ing,” Signal Processing, vol. 86, no. 3, 2006, pp. 549–571.

V. Stodden, 10.	 Model Selection When the Number of Variables
Exceeds the Number of Observations, doctoral dissertation,
Dept. Statistics, Stanford Univ., 2006.

I. Rahman et al., “Multiscale Representations for Manifold-11.	
Valued Data,” SIAM Multiscale Modelling and Simulation, vol.
4, no. 4, 2005, pp. 1201–1232.

I. Rahman, 12.	 Multiscale Decomposition of Manifold-Valued Data,
doctoral dissertation, Scientific Computing and Computa-
tional Math Program, Stanford Univ., 2006.

M. Shahram, D.L. Donoho, and J.L. Stark, “Multiscale 13.	
Representation for Data on the Sphere and Applications
to Geopotential Data,” Proc. SPIE Ann. Meeting, SPIE Press,
2007, pp. 67010a1–67010a11.

David L. Donoho is a professor at the University of
California, Berkeley, and at Stanford University. His
research interests include computational harmonic
analysis, high-dimensional geometry, and mathe-
matical statistics. Donoho has a PhD in statistics from
Harvard University. He is a member of the American
Academy of Arts and Sciences and the US National
Academy of Sciences. Contact him at donoho@stat.
stanford.edu.

Arian Maleki is pursuing an MS in statistics and a
PhD in electrical engineering at Stanford University.
His research interests include signal processing, ap-
plied mathematics, and machine learning. Maleki
has an MSc in electrical engineering with honors
from the Sharif University of Technology. Contact
him at arianm@stanford.edu.

Inam Ur Rahman works at Apple Computer. He has
a PhD from Stanford University in scientific comput-
ing and computational mathematics. Contact him at
inam@apple.com.

Morteza Shahram is a postdoctoral research fel-
low at Stanford University. His research interests
are in statistical signal and image processing and
computational mathematics. Shahram has a PhD
in electrical engineering at the University of Cali-
fornia, Santa Cruz. Contact him at mshahram@
stanford.edu.

Victoria Stodden is a research fellow at the Berkman
Center for Internet and Society at Harvard Universi-
ty. Her current research includes understanding how
new technologies and open source standards affect
societal decision-making and welfare. Stodden has
a PhD in statistics at Stanford University and an
MLS from Stanford Law School. Contact her at vcs@
stanford.edu; http://blog.stodden.net.

