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R e p r o d u c i b l e 
R e s e a r c h

M assive computation is transform-
ing science, as researchers from 
numerous fields launch ambitious 
projects involving large-scale com-

putations. Emblems of our age include

data mining for subtle patterns in vast data-•	
bases; and
massive simulations of a physical system’s com-•	
plete evolution repeated numerous times, as 
simulation parameters vary systematically.

The traditional image of the scientist as a soli-
tary person working in a laboratory with beakers 
and test tubes is long obsolete. The more accu-
rate image—not yet well recognized—depicts a 
computer jockey working at all hours to launch 
experiments on computer servers. In fact, today’s 

academic scientist likely has more in common 
with a large corporation’s information technol-
ogy manager than with a philosophy or English 
professor at the same university.

A rapid transition is now under way—visible 
particularly over the past two decades—that will 
finish with computation as absolutely central to 
scientific enterprise. However, the transition is 
very far from completion. In fact, we believe that 
the dominant mode of scientific computing has al-
ready brought us to a state of crisis. The prevalence 
of very relaxed attitudes about communicating ex-
perimental details and validating results is causing 
a large and growing credibility gap. It’s impossible 
to verify most of the results that computational 
scientists present at conferences and in papers.

The Crisis
To understand our claim, and the necessary re-
sponse, we must look at the scientific process 
more broadly. Originally, there were two scientific 
methodological branches—deductive (for example, 
mathematics) and empirical (for example, statistical 
data analysis of controlled experiments). Many sci-
entists accept computation (for example, large-scale 
simulation) as the third branch—some believe 
this shift has already occurred, as one can see in 
grant proposals, keynote speeches, and newsletter 
editorials. However, while computation is already 
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indispensable, it does not yet deserve elevation 
to third-branch status because current computa-
tional science practice doesn’t generate routinely 
verifiable knowledge. The scientific method’s cen-
tral motivation is the ubiquity of error—the aware-
ness that mistakes and self-delusion can creep in 
absolutely anywhere and that the scientist’s effort 
is primarily expended in recognizing and rooting 
out error. Before scientific computation can be ac-
corded the status it aspires to, it must be practiced 
in a way that accepts the ubiquity of error, and 
work then to identify and root out error. Deduc-
tion and empiricism are powerful but error-prone. 
Even very disciplined and cultivated branches of 
science suffer notably from the problem of errors 
in final, published conclusions.1 Vagueness, wan-
dering attention, forgetfulness, and confusion can 
plague human reasoning. Data tend to be noisy, 
random samples contain misleading apparent pat-
terns, and it’s easy to mislabel data or misinterpret 
calculations. Beginning researchers in science face 
a lengthy struggle to discipline their thoughts and 
expressions and to identify and root out mistakes. 
They must also adopt disciplined habits of collec-
tion, treatment, and data processing and develop 
a profound understanding that measurement er-
ror causes mistakes in a substantial fraction of 
conclusions. Even established empirical scientists 
struggle when interpreting or processing a data-
set; obscure misunderstandings could invalidate 
the analysis, or random noise could be confused 
with meaningful signal. Mature responses to the 
ubiquity of error have evolved: for deduction, 
formal logic, and mathematical proof; for empiri-
cism, statistical hypothesis testing, and standard-
ized reproducibility information (data, materials, 
and methods).

Like deduction and empiricism, computation 
is also highly error-prone. From the newcomer’s 
struggle to make even the simplest computer pro-
gram run to the seasoned professional’s frustration 
when a server crashes in the middle of a large job, 
all is struggle against error. In the world of com-
puting in general, not just scientific computing, 
the ubiquity of error has led to many responses: 
special programming languages, error-tracking 
systems, disciplined programming efforts, orga-
nized program testing schemes, and so on. The 
point we make is that the tendency to error is cen-
tral to every application of computing.

In stark contrast to the sciences relying on de-
duction or empiricism, computational science is 
far less visibly concerned with the ubiquity of er-
ror. At conferences and in publications, it’s now 
completely acceptable for a researcher to simply 

say, “here is what I did, and here are my results.” 
Presenters devote almost no time to explaining 
why the audience should believe that they found 
and corrected errors in their computations. The 
presentation’s core isn’t about the struggle to root 
out error—as it would be in mature fields—but is 
instead a sales pitch: an enthusiastic presentation 
of ideas and a breezy demo of an implementation. 
Computational science has nothing like the elabo-
rate mechanisms of formal proof in mathematics 
or meta-analysis in empirical science. Many users 
of scientific computing aren’t even trying to fol-
low a systematic, rigorous discipline that would 
in principle allow others to verify the claims they 
make. How dare we imagine that computational 
science, as routinely practiced, is reliable!

A Practical Response
Jon Claerbout saw this crisis coming more than 
20 years ago. Working in exploration geophysics, 
which requires data analysis and computational 
algorithm development, he saw that the informa-

tion computational scientists conveyed in their 
publications was seriously incomplete. Paraphras-
ing Claerbout you might say that “an article about 
computational science in a scientific publication 
is not the scholarship itself, it’s merely scholar-
ship advertisement. The actual scholarship is the 
complete software development environment and 
the complete set of instructions which generated 
the figures.”2

Claerbout, together with his Stanford Explora-
tion Project team, developed a system for docu-
ment preparation that attempted to encapsulate a 
body of work’s full scholarly content. When read-
ing an article using the special document viewer 
his team created, you find yourself inside the com-
plete computational environment (code and data) 
that generated the results that the article presents. 
His group hyperlinked the code underlying the 
figures in the papers to the document so that 
readers could study and even rerun the code to 
reproduce the results from scratch. Readers could 
even play “what if” games, modifying the original 
version’s parameters, to see how the author’s re-
sults would change.

Although most scientists today can more easily 

We publish not just computational results  

but also the complete software environment 

and data that generated those results.
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understand these concepts than 20 years ago, and 
the technology is much easier to use today than it 
was then, scientists still don’t widely practice or 
routinely demand this approach.

Our Own Efforts
In the early 1990s, David Donoho learned of 
Claerbout’s ideas and began to practice them in 
his own research. Roughly speaking, Donoho 
didn’t trust himself to turn out good work unless 
his results were subject to the open criticism of 
other researchers. He also learned from experi-
ence not to believe that graduate students were 
doing the work they believed they were doing un-
less he studied and ran the code himself. Cross-
platform, high-level quantitative programming 
environments, such as Matlab, were becoming 
standard tools.

Donoho’s approach was to make sure that the 
details underlying the datasets, simulations, fig-
ures, and tables were all expressed uniformly in 
Matlab’s standard language and computing en-
vironment and made available on the Internet—
which was, at that time, becoming a standard 
tool—so that interested parties could reproduce 
the calculations underlying a particular paper. 
He also decided to impose that discipline on 
students. At the time, he was working in com-
putational harmonic analysis (wavelets, wavelet 
packets, and time-frequency methods), and few 
computational tools were available. After he and 

his collaborators had written several papers on 
wavelets, Donoho was able to combine all the 
tools into a single package, Wavelab, which con-
tained a unified set of wavelet and time-frequen-
cy tools, and reproduced all the calculations in 
those papers.

Wavelab is based on the Matlab quantitative 
computing environment, which has a program-
ming language for manipulating matrices and 
vectors as well as useful plotting tools. Matlab 
runs on numerous operating systems, so it offers 
a programming language that’s free of machine 
dependencies. Wavelab is installed as a Matlab 
toolbox and has been available online in some 
version since 1993. The original version had 
more than 700 files, including M-files, C-code, 
data, and documentation—it has since grown. 
For more information on Wavelab, see Jonathan 
Buckheit and Donoho’s paper, “Wavelab and Re-
producible Research.”2

Although many Matlab toolboxes were available 
before Wavelab’s release, it seems that Wavelab 
was the first effort to provide a toolbox specifi-
cally designed to reproduce results in a series of 
computational science papers. Research ethos 
at the time (and mostly since) wasn’t to publish 
a complete reproducible package. Instead, re-
searchers either did nothing to release algorithms 
and data to the outside world, or they published 
fragments of their environment, ignoring the 
notion of true reproducibility. The purpose of 
Wavelab was never to provide a complete “wave-
let toolbox” for general-purpose use. However, 
because of the broad range of papers that were 
reproduced in the original Wavelab release, the 
package itself contained a fairly complete offer-
ing of wavelet transforms and time-frequency-
analysis tools. Teachers had also been using it and 
had developed numerous pedagogical examples. 
As a result, many users viewed it as free software 
that competed with commercial packages. In fact, 
the central motivation in the authors’ minds was 
reproducibility; the papers in Wavelab became 
a kind of benchmark because the papers fully 
documented signal-processing techniques’ per-
formances in certain datasets. When develop-
ing other new techniques, researchers often used 
the Wavelab datasets and performance measures 
as a way to compare methods. Partly as a result, 
Wavelab became highly cited. We found that 
from 1996 to 2007, Wavelab received 690 cita-
tions from Google Scholar, and we studied 100 
randomly selected citations in preparing this ar-
ticle (Figure 1 shows the citation count by year, 
and Table 1 categorizes usage patterns).
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Figure 1. Citation counts for Wavelab by year. We found 690 
citations in Google Scholar, with citations continuing from the mid 
1990s until today.
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Why Do This?
Why did we feel it was important to proceed in this 
way? Several reasons are mentioned in “Wavelab 
and Reproducible Research,”2 the thrust being 
that if everyone on a research team knows that 
everything they do is going to someday be pub-
lished for reproducibility, they’ll behave differ-
ently from day one. Striving for reproducibility 
imposes a discipline that leads to better work.

In pursuing full reproducibility, we fundamen-
tally produce code for strangers to use. Although 
it might seem unnatural to help strangers—and 
reluctance to do so certainly impedes the spread 
of reproducible research—our term stranger really 
means anyone who doesn’t possess our current 
short-term memory and experiences. In the heat 
of a computational project, we store many things 
in short-term memory that we need at that mo-
ment to use the code productively. Developing for 
a stranger means avoiding reliance on this soft, 
transient knowledge and, more specifically, codi-
fying that knowledge objectively and reproduc-
ibly. Is it then really necessary to help strangers? 
We think that it is. Only if we work as if a stranger 
must use the code without complaint will we pro-
duce code that’s truly reproducible.

In fact, we needn’t think that we’re doing some-
thing unnecessarily altruistic by developing code 
for mere strangers. There are some very impor-
tant strangers in our lives:

coauthors,•	
current and future graduate students,•	
new postdoctoral fellows,•	
anonymous referees of our papers and grant •	
proposals, and
future employers.•	

We call them strangers because they wouldn’t 
share all the short-term information we’ve re-
cently accumulated in developing our current 
computational results. In fact, years from now, 
we ourselves will be such strangers, not remem-
bering the myriad small details that accumulated 
in our minds during this project. It’s not uncom-
mon for a researcher who doesn’t follow repro-
ducibility as a personal discipline to forget how 
the software in some long-ago project was used, 
what its limitations were, or even how to gen-
erate an example of its application. In contrast, 
a researcher who has worked reproducibly can 
actually go to the Internet, find his own long-
ago work there, download it, and use it in the 
same way that anyone else could. Thus, work-
ing reproducibly helps everyone, including our 

future selves. It seems that striving for truly re-
liable computational results is inseparable from 
dedicating our efforts to producing a package 
that anyone can run from scratch to reproduce 
our results.

Our Framework Broadens
We’ve now worked within the reproducibility 
paradigm for 15 years, during which time we’ve 
tried to get our collaborators, students, and post-
docs to participate. To help make this happen, 
we’ve created a family of toolboxes following the 
Wavelab framework:

Atomizer•	 , for sparse representation of signals by 
ℓ1 minimization;
Beamlab•	 , for multiscale geometric analysis;
Sparselab•	 , for sparsity-seeking decomposition 
and reconstruction;
Symmlab•	 , for multiscale analysis of manifold-
valued data; and
Spherelab•	 , for multiscale decomposition of data 
on the sphere.

All these toolboxes share a common arrangement 
of files and a common scheme for document-
ing and organizing the information. For more 
information on our research and tools, see the 
extended version of this article at www-stat.stan-
ford.edu/~wavelab/Reproducibility.htm. An au-
thor working on a novel project can easily adopt 
the Wavelab framework: simply download one of 
these packages, study its file structure, and treat 
that structure as a model. Then, clone the gener-
al-purpose files in the package, rename them, and 
edit them to create an entirely new package in a 
different topic area.

Over time, the packages in question—partic-
ularly Wavelab—have grown through additions. 
Although many of these additions have come from 
doctoral students or postdocs in our group, we’ve 
also had contributions from outsiders, see the Web 
address in the preceding paragraph for URL links 
to several such examples, including those that fol-

Table 1. Usage pattern analysis of Wavelab citations.*

Use pattern %

Used algorithms in Wavelab to process data 74

Used both algorithms and datasets in Wavelab 11

Used only datasets from Wavelab 3

Compared performance of algorithms with 
algorithms in Wavelab

12

*Selected citations in Google Scholar classified by the way the citing article  
used Wavelab.
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low. The framework’s modular design is such that 
it’s fairly easy to simply drop a new folder into a 
toolbox and create a new distributable archive. 
We’ve apparently inspired former students to de-
velop their own frameworks.

Emmanuel Candès at Cal Tech has worked with •	
doctoral students Laurent Demanet, Lixing Ying, 
and Justin Romberg to produce two reproduc-
ibility-inspired packages—Curvelab for curvelet 
analysis and ℓ1 Magic for ℓ1 minimization,
Xiaoming Huo in the School of Industrial Sys-•	
tems and Engineering at Georgia Tech has 
released the package CTDLab, which solves 
“connect the dots” problems.3

Researchers elsewhere have built packages that 
build on our framework (for Web addresses, see 
this article’s extended version, cited earlier):

Jalal Fadili, in the Groupe de Récherche en In-•	
formatique, Image, Automatique et Instrumen-
tation de Caen, has developed an open software 
package called MCALab.
Stephane Mallat of Ecole Polytechnique has •	
written a major book using our approach,4 in 
which he uses Wavelab to generate all the fig-
ures and examples—this code is included in re-
cent releases of Wavelab.

Books reach a major milestone when published in 

a foreign language. The analogy for a software 
package: translation to another computer lan-
guage. Astronomer Amara Graps developed the 
“IDL Wavelet Workbench,”5 based partially on 
the Wavelab package. IDL is a popular comput-
ing environment for astronomical data analysis. 
We next briefly describe three recent toolboxes 
developed in our framework.

Sparselab
Modern research in computational harmonic anal-
ysis has shown that many kinds of signal content are 
highly compressible in an appropriate transform do-
main. Thus, images are compressible in the wavelets 
domain, acoustic signals can be compressible in the 
local cosine domain, and so on. This is the modern 
information era’s central phenomenon—we exploit 
it every time we download movies and music from 
the Web or use a cell phone to view multimedia 
content. Compressibility can be explained simply. 
The transformed signal is sparse: many values are 
essentially zero and can be ignored.

Sparsity has fundamental advantages beyond 
mere data compression. Amazingly, an under-
determined system of equations might well have 
many solutions but only one highly sparse solu-
tion.6,7 This is the foundation of compressed sensing, 
a rapidly developing field driven by the discovery 
that when a signal has a highly sparse transform, 
the required number of measurements is propor-
tional not to the size of the uncompressed signal 
but instead to the size of the compressed signal.8

Sparse representation is a rapidly developing 
field. The ISI Thompson index classified the topic 
of “sparse solution of underdetermined systems of 
linear equations” as a new research front in May 
2005. The journal IEEE Signal Processing named a 
core paper reproduced by Sparselab, “Extensions 
of Compressed Sensing,” as its most-cited paper in 
2006.9 By our count, in 2008, roughly 50 papers 
with some variant of the words compressed sensing 
appeared in Magnetic Resonance in Medicine, and 
the March 2008 issue of IEEE Signal Processing 
magazine (circulation 20,000) was devoted to this 
topic. Besides compressed sensing, Sparselab cov-
ers subtopics such as statistical model selection. 
Ten researchers have contributed software, and 
as many as three people contributed their time to 
support and maintain the package. One of this ar-
ticle’s coauthors, Victoria Stodden, managed the 
creation of this reproducible research software 
package as a component of her doctoral thesis.10

Sparselab is both a vehicle for authors in the 
field to make their papers fully reproducible and a 
source of established problems and algorithms for 

Figure 2. A recomputed and reproduced figure from the paper 
“Extensions of Compressed Sensing.”9 The box in the middle lists all 
the figure numbers in the paper; we reproduce here Figure 2 from 
that paper, but we could reproduce any other figure by clicking 
elsewhere in the list. Note the button in the lower right labeled 
See Code; clicking here reveals the underlying source code that 
generates this figure.
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sparse representation. We released Sparselab in 
2006 at http://sparselab.stanford.edu, and the latest 
version, Sparselab 2.1, has been downloaded more 
than 7,000 times in 2008 alone. A casual search 
turned up more than a dozen papers that have used 
Sparselab to generate their results, and the tool is 
still evolving through volunteer contributions.

The package has a user interface that goes be-
yond merely reproducing published results. It has 
a convenient graphical interface that lets users 
easily make variations on experiments in the pub-
lished papers; see Figure 2 for an example of this 
user interface.

The core package has 663 files and folders, 
mostly associated with articles. Sparselab also in-
cludes some code for general algorithms, such as 
Michael Saunders’ primal-dual method for convex 
optimization.

Reproducibility can accelerate progress in a 
hot field and implicitly creates a source of chal-
lenging problems and datasets. Many research-
ers are interested in comparing their own novel 
algorithms with the algorithms first published in 
the Sparselab package. This, in turn, leads those 
researchers to cite reproducible papers in Sparse-
lab. Some of those early researchers later contrib-
uted their own algorithms to the package, thus 
making it even more authoritative as a source for 
compressed sensing and related applications of 
sparsity-seeking methods.

Symmlab
Traditionally, computational harmonic analysis 
works with arrays of numbers. Many new tech-
nological and scientific datasets don’t contain 
traditional numbers; instead, measurements pin-
point locations on curved surfaces and manifolds. 
Human motion data provides a simple example. 
The measurements quantify a configuration 
of the principal joint angles in the human body 
(elbows, wrists, and so on). Such data are not an 
arbitrary collection of numbers, because the joint 
angles must be mutually consistent. If we view 
them as specifying points in a manifold, all the 
consistency conditions are naturally in force. The 
configuration manifold in question is a product 
of numerous copies of the Lie groups SO(2) and 
SO(3), one copy for each joint. Here, SO(k) refers 
to the collection of orientations of a k-dimension-
al orthogonal coordinate set in Rk. The choice of 
SO(2) versus SO(3) depends on the type of flexibil-
ity available in a specific joint. Aircraft orientation 
data provide another example, in which the data 
express the aircraft’s orientation as a function of 
time. You can convert traditional aircraft orien-

tation coordinates—pitch, roll, and yaw—into an 
SO(3)-valued representation (see Figure 3).

It turns out that you can model a very broad 
collection of manifold-valued data using an el-
egant class of manifolds called Riemannian sym-
metric spaces. Such manifolds, in turn, permit 
an elegant systematic notion of wavelet trans-
form.11 Figure 4 presents aircraft orientation 
data’s SO(3)-valued wavelet coefficients. Sym-
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Figure 3. SO(3)-valued data: aircraft orientation as function of time. 
A tripod with blue, red, and green vectors indicates each instant’s 
orientation. The wild variation in orientation near the series’ end 
indicates that the airplane lost control and crashed.
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Figure 4. Aircraft orientation’s wavelet transform, organized by scale 
(vertical axis) and time (horizontal axis). Each wavelet coefficient (not 
presented here) is a Lie algebra SO(2) element; the display presents 
each coefficient’s norm. The large coefficients at coarse scales and at 
the series’ end at fine scales demonstrate that the aircraft’s motion 
was smooth until control was lost, at which time motion became 
energetic at all scales.
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mlab, a Matlab toolbox, plays the same role for 
symmetric-space-valued data that Wavelab plays 
for more traditional data. It can reproduce “Mul-
tiscale Representations for Manifold-Valued 
Data,” a paper by Inam Ur Rahman and his col-
leagues11 and Rahman’s thesis,12 and it might be 
the first available toolbox for manifold-valued 
data’s multiscale analysis.

Symmlab follows the Wavelab framework, with 
valuable improvements related to developments in 
later packages such as Sparselab. Compared to its 
sister packages, there is a great deal of emphasis on 
providing new and interesting datasets. Symmlab 
raises awareness of manifold-valued data and 
makes available tools to analyze such data. You 
might even view the paper’s main contribution11 
as the formalization of this need. Here, reproduc-
ibility is important more for the diffusion of the 
datasets rather than the results.

The datasets available in the download come 
from diverse sources:

weak-gravitational-lensing data from astronomy,•	
motion-capture data in animation,•	
aircraft-motion data from aviation,•	
time-varying-deformation-tensor data from geo•	
physics,
diffusion-tensor data from medical imaging,•	
subspace-tracking data from array signal proc•	
essing,
wind-direction and speed data from climatol-•	
ogy, and
synthetic-aperture-radar- (SAR-) interferomet-•	
ric data from remote sensing.

The Symmlab package is available at www-stat.
stanford.edu/~symmlab. It contains more than 
100 M-files, including core algorithms, utili-
ties to generate synthetic data, and visualization 
tools. The Web site contains instructions and 
documentation for registering, downloading, in-
stalling, and using the package. Rahman and his 
colleagues’ paper describes technical details about 
the algorithms and can also be downloaded from 
this Web site.12

This toolbox demonstrates an important ad-
vantage of reproducible research: reproducibility 
is a way to rapidly disseminate new problems and 
illustrate new data types. In this case, the person 
downloading Symmlab might be uninterested in 
wavelets per se but very interested in symmetric-
space-valued data and other fascinating applica-
tion areas. The interested reader can download, 
install, verify, see the raw data, and learn about 
the problems a reproducible paper addresses, rath-

er than the mathematical solutions it proposed. 
Exact reproducibility has side effects from pub-
lishing the underlying data and the algorithm, not 
just the intended result.

Spherelab
Traditional wavelet analysis concerns data that 
take real values and are organized by a Cartesian 
parameter such as time (for example, an equi
spaced sampling in time) or two-dimensional 
space (for example, a regular Cartesian grid in 
the plane). However, in the Earth sciences, avia-
tion, atmospheric sciences, and astronomy, many 
important datasets measure properties of various 
locations on the sphere. Such settings require 
wavelet transforms adapted to spherically orga-
nized data.

There are many systems of coordinates on the 
sphere. The Healpix system is the basis for much 
recent work in observational cosmology (http://
Healpix.jpl.nasa.gov). The major astronomical 
organizations—NASA and the European South-
ern Observatory—adopted the Healpix system 
to organize and process their data. They spon-
sored an open source software package perform-
ing Healpix manipulations; it includes Fortran 
90, IDL, and C++ sources. Although relatively 
new and little known to outsiders, scientists and 
engineers in many other fields could profitably 
use Healpix.

The article “Multiscale Representation for 
Data on the Sphere and Applications to Geo
potential Data”13 develops wavelet representations 
for Healpix-organized data. Spherelab is a Matlab 
toolbox that lets readers reproduce calculations 
from that paper. Morteza Shahram developed 
Spherelab as part of his postdoctoral fellowship 
at Stanford; his sponsor wanted him to develop a 
new kind of wavelet for spherical data that would 
cooperate with traditional spherical harmonics 
expansions. Astronomers developed the Healpix 
grid as a pointset on the sphere so that researchers 
could perform fast spherical harmonics expansion 
evaluation; this makes the Healpix grid particu-
larly natural for wavelet development that cooper-
ates with spherical harmonics.

Because of sponsor interest, Shahram specifi-
cally focused Spherelab on geopotential applica-
tions, where researchers must evaluate different 
geo-related quantities and improve current geo-
potential models as they collect new measure-
ments. The main deliverable was a system for 
compressing and decompressing a geopotential 
field on the sphere much more rapidly than possi-
ble by traditional spherical harmonics expansions. 
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Shahram’s article13 demonstrates that Spherelab 
achieved this milestone, and reproducing those 
results verifies this.

Spherelab should be an easily accessible and 
useful tool for non-geopotential applications, 
such as 3D object rendering in computer graphics. 
Spherelab includes tools for conversions between 
Healpix and Healpix wavelets, refinement schemes 
on the sphere, statistical analysis, demos, test files, 
and so on. Overall, this package has roughly 150 
main files and about the same number of test files. 
Figure 5 shows a multiscale decomposition of the 
global geopotential.

Spherelab demonstrates that reproducibility is 
a way for research sponsors to ensure that funded 
research will assume tangible forms. In this case, 
the sponsor wasn’t at all interested in the academic 
paper but rather in the software producing results 
in that paper. The sponsor could download, in-
stall, verify proper code function, and see that his 
or her money was well spent.

Reproducibility as  
Software Publishing
Full-blown reproducibility requires publishing 
code to regenerate computational results. Con-
sequently, an adherent reproducibility becomes a 
software publisher. This could be a new experi-
ence for academics, and it surely adds a new set of 
issues to deal with—here are a few.

Tech Support
We hear many positive comments from our software 
users, but several times a year, we hear of problems 
in one of our packages. Typically, these are mun-
dane issues, most frequently related to installation. 
Occasionally, more serious issues occur, often to do 
with the release of a new version of Matlab.

Tech support is both a burden and an opportu-
nity. We often assign tech support tasks to gradu-
ate students who are just starting their doctoral 
research. This gives the student a chance to re-
alize early on that strangers really will download 
and try to use published code and that mistakes in 
such code will lead to problem reports. This expe-
rience, we believe, makes students aware that it’s 
important to do high-quality and lasting work in 
their software development efforts. They quickly 
realize that we really do mean it when we say all 
their computational work might someday be sub-
ject to public scrutiny.

Code Maintenance
Much of the original Wavelab package’s Matlab 
code was written 15 years ago, but still runs cor-

rectly. We needed to change a few basic utility 
functions over the years, but otherwise, much of 
the code still runs without problems. This vali-
dates Matlab’s role as a uniform computational 
environment for delivering reproducibility across 
hardware and operating system variations.

The bulk of the work involved in maintaining 
the code concerns problems that have arisen with 
major changes in Matlab or in the underlying op-
erating system. This, again, isn’t all bad: gradu-
ate students in the early stages of their doctoral 
careers assigned to maintenance tasks will learn 
that we intend to keep the code working for many 
years to come and will learn about potential prob-
lems involved in doing so. This awareness can 
prepare students to do a better job in their own 
future projects.

Maintaining a Web Presence
Of course, reproducibility means publication 
over the Internet. This requires setting up and 
maintaining a Web site, which again can be in-
formative and educational but occasionally time-
consuming. However, it seems to be getting easier 
all the time.

Reflections
Fifteen years of experience with reproducibility 
provoked numerous discussions with other re-
searchers about the need for and effectiveness of 
this initiative. We offer a few take-away points.

Figure 5. Multiscale decomposition of global geopotential using 
Healpix wavelets. The new high-resolution EGM-06 dataset became 
available in 2006; it’s used in aircraft navigation and contains 
unprecedented data density. Different panels represent different 
scales of the Healpix wavelets decomposition; fine-scale features near 
mountain ranges and continental boundaries are evident.
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Has It Worked?
Reproducible research has impact. Google Scholar 
displays thousands of citations of the core papers 
reproduced by Wavelab and Atomizer; there are 
already hundreds of citations of Sparselab’s still 
very recent core papers. Many people have now 
used the software in these packages, which ap-
pears to perform as originally hoped. This is what 
reproducibility really delivers.

When Did It not Work?
Numerous examples of reproducible research 
emerged from our efforts over the past 15 years, 
but we can cite examples of reproducibility. Ex-
ceptions fall in three categories:

Postdocs•	 . By and large, postdocs are in a hurry 
to publish and would prefer to work the way in 
which they’re accustomed rather than absorb 
some new way of working—and who can blame 
them?
Theorists•	 . For the most part, a theory paper 
might have a few diagrams in it and perhaps a 
numerical calculation, but the theory student 
probably hates computing anyway and sees no 
need to develop more disciplined ways of doing 
computational research.
One-off projects•	 . We did a few computational 
projects that might have benefited from repro-
ducibility, but were too small-scale to justify 
building an entire toolbox that must then be 
maintained. Also, there was no prospect of any 
of the authors continuing their research in the 
given direction, so motivation for the required 
investment was very weak.

An advisor can’t force reproducibility on collabo-
rators. Researchers must believe that reproducibil-
ity is in their best interest. Postdocs, in particular, 
are generally panicked about their future pros-
pects and tend to be short-sighted—although not 
always: Thomas Yu, Georgina Flesia, and Morte-
za Shahram prove that some postdoctoral scholars 
are willing to work reproducibly.

Quick Answers to Knee-Jerk Objections
Many researchers exhibit an instinctive aver-
sion to working reproducibly; when they vocalize 
their instincts, we give them the following win-
ning responses.

Reproducibility takes time and effort. Response: 
Undeniably true. If our only goal were getting 
papers published, we would get them published 
sooner if we didn’t have to also worry about pub-

lishing correct and polished code. Actually, our 
goal is to educate future researchers; this takes 
time and requires effort. Moreover, if we view 
our job in graduate education as actually review-
ing and correcting students’ work, this is dramat-
ically easier to do if they work reproducibly—so, 
in many cases, there’s actually less total time and 
effort than otherwise.

No one else does it, so I won’t get any credit for it. 
Response: Partly true. Few people today work 
reproducibly. However, for exactly this reason, if 
your code is available, your work will get noticed 
and actually used, and because it’ll get used, it’ll 
eventually become a reliable tool. Would you pre-
fer that other researchers not trust your work or 
ignore it or that someone else’s implementation of 
your idea become better known simply because 
they make it available?

Strangers will use your code to compete with you. Re-
sponse: True. But competition means that strang-
ers will read your papers, try to learn from them, 
cite them, and try to do even better. If you prefer 
obscurity, why are you publishing?

My computing environment is too complicated to 
publish like this. Response: This seems a winning 
argument if you must work on a 10,000-node clus-
ter using idiosyncratic hardware. But if so, should 
anyone believe that your obscure computing envi-
ronment is doing what you say it does? Also, how 
can you believe it? Shouldn’t you test a subset of 
your computations in a standard environment, in-
stead of in an idiosyncratic one, and then verify 
that you obtained identical results? Isn’t repro-
ducibility more important in this case, not less?

Sober Answers to Thoughtful Objections
Some researchers have been able to vocalize 
thoughtful objections to reproducibility; here are 
a few such objections, together with what we view 
as winning arguments.

Reproducibility undermines the creation of intellectu-
al capital. Instead of building up a comprehensive 
set of tools in a lab over years, you give the tools 
away for free, before they ripen. This prevents a 
researcher from developing a toolkit in the course 
of a career.

Response: A postdoc could argue this with some 
justification, but not a senior researcher. For a se-
nior researcher running a lab in which doctoral 
students come for a time and then leave, the only 
way to actually ensure the creation of valuable 
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capital is to require students to work reproducibly, 
so that something of value can be created under 
the scrutiny and emendation of others—including 
the senior researcher. For postdocs specifically: 
if you intend to someday be a senior researcher, 
shouldn’t you learn today how to best organize 
substantial computational projects in a way that 
you and your colleagues can benefit from them 
in the future? Won’t your skills impress potential 
employers more if you can show them that your 
work is reproducible and transparent to them? 
Won’t potential senior collaborators view you as 
a more valuable partner if they believe they can 
work transparently with code that you develop? 
Isn’t getting noticed a problem for postdocs? 
Wouldn’t other people using your code be the 
same as getting noticed?

Reproducibility destroys time-honored motivations for 
collaboration. Traditionally, science is developed 
through collaboration in which scientists visit 
each others’ laboratories and share tools and ideas 
in quid pro quo arrangements. This promotes 
the spread of ideas through close human contact, 
which is both more humane and more likely to 
lead to educational and intellectual progress. If 
people don’t need to collaborate because they can 
just download tools, science’s social fabric is weak-
ened. As science is primarily a social entity, this is 
quite serious.

Response: This is the intellectual capital argu-
ment in disguise. Reproducibility is important 
within one laboratory or a team of investigators 
or even for future use of the same code by the 
same investigator. If you were working in a secret 
establishment, air-gapped to the outside world, 
working reproducibly would still make sense. 
The issue is thus not reproducibility, but wide-
spread publication. You always have the option 
to work reproducibly but then modify or skip the 
last step—namely, giving away your code. You 
can even provide remote, partial, controlled ac-
cess to the computing environment underlying a 
research project. The traditional approach is to 
publish only the binary code and not your calcu-
lation’s source code. A more modern approach is 
to set up a Web server that lets outsiders access 
proprietary algorithms in client-server fashion. 
Outsiders would not see source code of key algo-
rithms but would instead upload their own data-
sets to the server that those algorithms would 
process. Upon completion, outsiders would then 
download results from the server. This server 
architecture also solves the problem of keep-
ing data private while letting others reproduce 

calculations. The server could apply algorithms 
to preselected private datasets that reside on the 
server only. The server architecture lets others 
check an implementation’s accuracy and timing 
results while not giving away proprietary algo-
rithms and data.

Reproducibility floods journals with marginal science. 
People will just download reproducible papers, 
make one tweak, and then modify the original 
paper in a few lines and resubmit a new paper.

Response: This phenomenon is probably real (our 
conclusion from anecdotal evidence), but trivial 
mechanisms exist for this problem, such as routine 
rejection of papers embodying tiny variations.

True reproducibility means reproducibility from first 
principles. It proves nothing if I point and click 
and see the numbers I expect to see. It only proves 
something if I start from scratch and build my 
version of your system and get your results with 
my implementation.

Response: If you exactly reproduce my results 
from scratch, that’s quite an achievement! But it 
proves nothing if your implementation fails to 
give my results because we won’t know why it 
fails. The only way we’d ever get to the bottom of 
such a discrepancy is if we both worked reproduc-
ibly and studied detailed differences between code 
and data.

C laerbout’s original idea envisioned 
people working from a hyperdocu-
ment interface where, as they read an 
article, they could click on a figure, 

see the underlying code, and study or even rerun 
it. Our approach falls far short of this Utopian vi-
sion. We give the sophisticated Matlab user the 
ability to repeat our computations, access our M-
files, and access our datasets.

Many people who find reproducibility interest-
ing do so for reasons we wouldn’t have predicted—
that is, they want to understand one small detail 
or look at one aspect of a dataset. A fancier user in-
terface might make the package less useful to the 
people really interested in reproducing computa-
tional science and really capable of understanding 
what’s going on.

Nevertheless, we can see many ways to modern-
ize our framework. A principal development of the 
past five years is the spread of social networking, 
Wikipedia, SourceForge, and related phenomena. 
Deploying such ideas in connection with repro-
ducible research might let anonymous users post 
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improvements to packages on their own, without 
real involvement from our own group. Instead, we 
now require that users who want to add an im-
provement to one of our packages contact us and 
work with us. At the moment, we don’t see any 
reason to abandon our old-fashioned approach—
but we could be admittedly behind the times.�
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