
A Corpus-based study of repair cues in spontaneous speechChristine H. NakataniAiken Computation Laboratory, Harvard University, Cambridge, MA 02138Julia Hirschberg2D-450, AT&T Bell Laboratories, Murray Hill, NJ 07974Short Title: Repair cues in spontaneous speechReceived:The occurrence of dis
uencies in fully natural speech poses di�cult challenges for spoken languageunderstanding systems. For example, although self-repairs occur in about 10% of spontaneous utterances,they are often unmodeled in speech recognition systems. This is partly due to the fact that little is knownabout the extent to which cues in the speech signal may facilitate automatic repair processing. In thispaper, acoustic and prosodic cues to such repairs are identi�ed, based on an analysis of a corpus takenfrom the ARPA Air Travel Information System database, and methods are proposed for exploiting thesecues for repair detection, especially the task of modeling word fragments, and repair correction. Therelative contributions of these speech-based cues, as well as other text-based repair cues, are examinedin a statistical model of repair site detection that achieves a precision rate of 91% and recall of 86% ona prosodically labeled corpus of repair utterances. (This paper appears in the Journal of the AcousticalSociety of America, 95 (3), March 1994, pp.1603{1616.)PACS numbers: 43.72Ja,43.70.B,43.70.Bk,43.70.Fq
1



Nakatani&Hirschberg, JASA 2IntroductionStudies of large speech corpora have shown that approximately 10% of spontaneous utterances containdis
uencies involving self-correction, or repairs (Hindle, 1983; Shriberg et al., 1992). Blackmer and Mitton(1991) report a rate of one dis
uency per 4.6 seconds for radio talk show callers. Yet repairs are oftenunmodeled in spoken language systems, causing recognition errors such as those shown in Examples (1) and(2). (Recognizer output presented in these examples was generated by the system described in (Lee et al.,1990). The presence of a word fragment in the examples is indicated by the diacritic `{'. Self-correctedportions of the utterance appear in boldface. All examples in this paper are drawn from the atis corpusdescribed in Section III.)(1) Actual string: What is the fare fro{ on American Airlines fourteen forty threeRecognized string: With fare four American Airlines fourteen forty three(2) Actual string: Show me all informa{ information about aircraft type, Lockheed L one zero one oneRecognized string: Show meal of make information about aircraft 
ight Lockhead L one zero one oneIn both of these examples, erroneous content words are introduced into the utterance transcription, resultingin uninterpretable recognition output.Even when all words in a repair utterance are correctly recognized, failure to detect a dis
uency can leadto interpretation di�culties during later processing. In Example (3), the string `twenty two twenty one forty'must somehow be interpreted as a 
ight arrival time.(3) : : :Delta leaving Boston seventeen twenty one arriving Fort Worth twenty two twenty one forty and
ight number : : :Due to an intonational phrase boundary between \two" and \twenty", it is clear to a human listener that thespeaker intended the hearer to replace the string \twenty two" with the string \twenty one". The recognitionsystem likewise must choose on some basis among the possible arrival time interpretations, `22:40', `21:40',or `1:40'.Although undetected and uncorrected dis
uencies may lead to serious errors in utterance transcriptionand interpretation, relatively little attention has been paid to developing methods for automatically detectingand correcting dis
uencies for spoken language systems. Robust parsing methods and coarse-grained inter-pretation strategies may partially bu�er a system against these types of errors and interpretation di�culties(Ward, 1991), inter alia, but use of these heuristic techniques to process output with recognition mistakes,while of practical use in the short-term, begs the underlying question concerning the acoustic and prosodicnature of this spoken language phenomenon.Before great energies are spent on solving problems created by de�ciencies in speech processing technology,it seems reasonable to inquire whether the technology itself can be enhanced, in this case by direct modelingof repair dis
uencies in speech recognition and spoken language understanding systems. In this paper, wecontribute to this goal of modeling repair dis
uencies by presenting �ndings on the acoustic and prosodicproperties of repairs. We report results from a study of repairs in spoken language system dialogues. Ourinvestigations are guided by past computational and speech analysis work, which we discuss in Section I.Our �ndings are interpreted within our model of repairs, the repair interval model (RIM), which wedescribe in Section II. In Section III, we present our empirical results. In Section IV, we investigate theusefulness of some of our empirical �ndings in a statistical model of repair detection using classificationand regression tree (cart) techniques, and �nally, in Section V, we discuss areas for future work.



Nakatani&Hirschberg, JASA 3I. Previous WorkWhile self-correction has long been a topic of psycholinguistic study, computational work in this area hasbeen sparse. The methods that have been proposed are, for the most part, text-based | that is, based onthe orthographic transcription | and make limited reference to acoustic or prosodic information.A. Computational ApproachesEarly work in computational linguistics treated repairs as one type of ill-formed input. Methods for inter-preting repair utterances were developed by extending existing text parsing techniques such as augmentedtransition networks (atns), network-based semantic grammars, case frame grammars, pattern matching anddeterministic parsing (Weischedel and Black, 1980; Carbonell and Hayes, 1983; Hindle, 1983; Weischedel andSondheimer, 1983; Fink and Biermann, 1986). For example, Carbonell and Hayes (1983, p. 128) proposedthe following pattern-matching approach to repairing \broken-o� and restarted utterances": (a) if two con-stituents of identical semantic and syntactic type are found when only one is allowed by the grammar, ignorethe �rst one; and (b) recognize explicit corrective phrases (such as \I mean" ) and appropriately substitutematerial following the corrective phrase for material preceding the phrase. Constraining the application ofboth rules was the following meta-rule: \Select the minimal constituent for all substitutions" (Carbonell andHayes, 1983, p. 128). These rules correctly handle certain cases of repair, but natural language grammarswill inevitably allow sequences of the same semantic and syntactic type. Repairs involving these parts ofthe grammar, such as the cardinal noun phrase repair in Example (3), are left unaddressed. In fact, thesekinds of utterances may be ambiguous between repair and non-repair interpretations, such as \twenty{ twotwenty" vs. \twenty two twenty", or \Pick up the blue{ green ball" vs. \Pick up the blue green ball".More recently, Shriberg et al. (1992) and Bear et al. (1992) have proposed a two-stage pattern-matchingapproach to processing repairs. In the �rst stage, lexical pattern matching rules operating on orthographictranscriptions are used to retrieve candidate repair utterances. Candidate utterances are retrieved by �ndingan exact repetition of some lexical item or items within a window of n words; a pair of pre-speci�ed adjacentlexical items, such as \a the"; or certain corrective phrases. The candidates are then �ltered, using syntacticand semantic information. The �rst stage of this model, the lexical pattern matcher, was tested on `nontrivial'repairs, which (Bear et al., 1992) de�nes as those requiring more editing than deletion of fragments and �lledpauses, with the following results reported: 309 of the 406 utterance containing such repairs in their corpusof 10,718 utterances were correctly identi�ed, while 191 
uent utterances were incorrectly identi�ed ascontaining repairs. This represents recall of 76% with precision of 62%. Of the repairs correctly identi�ed,the appropriate correction was found for 57%. Bear et al. (1992) also speculate that acoustic informationmight be used to �lter out false positives for candidates matching two of their lexical patterns, repetitionsof single words and cases of single inserted words, but do not report performing such an experiment.This two-stage model promotes the important idea that automatic repair processing might be made morerobust by integrating knowledge from multiple sources. The lexical pattern matching approach is computa-tionally tractable and provides broad coverage of repair types within a uniform processing framework. Incontrast to most earlier work, the e�ectiveness of the pattern matcher and of several �ltering routines wasempirically tested on a large corpus of spontaneous speech. However, certain weaknesses of lexical patternmatching in particular and text-based methods in general should be noted.One such weakness lies in the conceptualization of repair types. It is not clear how to choose among themany possible extensions to an existing set of lexical patterns to increase the coverage of a system, because



Nakatani&Hirschberg, JASA 4the principles governing the creation of patterns are not well-speci�ed. Ambiguity in pattern matchingalso increases the complexity of correction strategies (Bear et al., 1992). A more practical problem fortext-based methods in general is their reliance on accurate text transcriptions to identify and correct repairutterances. The assumption that such transcriptions can be produced by existing speech recognizers isoptimistic, particularly since current systems rely upon language models and lexicons derived from 
uentspeech and usually treat dis
uencies as noise. One particular challenge that these systems must face is wordfragmentation, as exempli�ed in Examples (1) and (2). Most repair utterances contain word fragments;(Bear et al., 1992) report a rate of 60% (366/607) fragment repairs, while we found 73% (298/382) of repairsin our corpus contained fragments (See Section III.A.2.). However, current recognition systems have noreasonable way of modeling individual word fragments in their lexicons, and thus can output only full wordsin the lexicon that most closely match the fragment.Text-based pattern-matching approaches have explored the potential contribution of lexical and gram-matical information to automatic repair processing, but have largely left open the question of whether thereexist acoustic and prosodic cues for repairs in general, in addition to particular acoustic-prosodic cues toindividual repair patterns, such as suggested in (Bear et al., 1992). One proposal that does lend itself to theintegration of speech cues into repair detection is that of Hindle (1983), who de�nes a typology of repairsand associated correction strategies. Hindle identi�es the following repair types:� Full sentence restart: an entire utterance is thrown out and a new utterance is started, e.g. IsAmerican 
ight one ninety three is dinner served.� Constituent level: one syntactic constituent, or part thereof, is replaced by another, e.g. Show me thecheapest fare from Da- from Philadelphia to Dallas.� Surface level: when identical words are repeated in sequence, the �rst string of occurrences is thrownout, e.g. I request uh that you should go to Dallas �rst uh approximately Fri- Friday.Correction strategies for each repair type are de�ned in terms of extensions to a deterministic parser. Inall cases, the application of a correction routine is triggered by the presence of an hypothesized phonetic\edit signal" marking the point of interruption of 
uent speech. This edit signal is described as \a markedlyabrupt cut-o� of the speech signal" (Hindle, 1983, p.123), following a proposal by Labov (1966). It is treatedas a special lexical item in the parser input stream that triggers one of four correction strategies, dependingon the parser con�guration. Thus, it is the point of detection itself that drives the correction strategy, notsimply lexical or syntactic aspects of the repair utterance.For testing purposes, Hindle employed a corpus of unrestricted spontaneous narratives in which editsignals were orthographically represented and lexical and syntactic category assignments hand-corrected.He found that he could automatically correct 97% of repairs correctly in a corpus of approximately 1500sentences. Importantly, Hindle's system allows for non-surface-based corrections and sequential applicationof correction rules (1983, p. 123), which simple pattern-matching approaches cannot readily handle. Forexample, in (4), a syntactic constituent is replaced by an entirely di�erent one, and in (5), a sequence ofoverlapping repairs must be corrected.(4) I 'd like to a 
ight from Washington to Denver : : :(5) I 'd like to book a reser{ are there f{ is there a �rst class fare for the 
ight that departs at sixforty p.m.



Nakatani&Hirschberg, JASA 5Hindle shows how his copy editing and restart rules, applied deterministically from left to right, are su�cientto handle similarly complex repairs such as Example (6), taken from his narrative corpus.(6) I { the { the guys that I 'm { was telling you about were.We borrow two main assumptions of Hindle's work in the current study: (a) correction strategies arelinguistically rule-governed, and (b) linguistic cues must be available to signal the occurrence of a repair andto trigger correction strategies. As Hindle noted, if the processing of dis
uencies were not rule-governed,it would be di�cult to reconcile the infrequent intrusion of dis
uencies on human speech comprehension,especially for language learners, with their frequent rate of occurrence in spontaneous speech. We viewHindle's empirical results as evidence supporting this claim, and so we do not concern ourselves in this paperwith the study of correction strategies per se. Hindle's results also indicate that, in theory, the edit signalcan be computationally exploited for both repair detection and repair correction. However, as Hindle notes,an acoustic-phonetic investigation of repairs is necessary to test the edit signal hypothesis.Our investigation of repairs is aimed primarily at determining the extent to which repair processingalgorithms can rely on the presence of an edit signal in practice. Secondarily, we hope to uncover acousticand prosodic cues other than the edit signal that may facilitate repair processing, assuming a parsing-basedframework such as that outlined by Hindle.B. Acoustic-Prosodic and Perceptual StudiesAcoustic and prosodic features of repairs have been investigated by psycholinguists, linguists, and otherspeech scientists. In this section we present an overview of some of these studies. Many of them will bediscussed in more detail in later sections.Early studies of repairs, such as (Nooteboom, 1980; Laver, 1980; Levelt, 1983), examined the phenomenonin the context of proposals for overall cognitive architectures. This work, like much psycholinguistic work onrepairs, sought to identify stages of human language production by looking at instances of breakdown andrecovery due to self-monitoring. Blackmer and Mitton (1991) measured the timing of repairs in recordingsof a Canadian call-in radio program. They concluded that the replanning of speech may occur before thepoint of self-interruption, in contrast to Levelt (1989) and Laver (1980), who held that replanning commencesafter 
uent speech has been interrupted. Although Blackmer and Mitton observed that many of their repairsinvolved aberrant phonemes and truncations, no systematic study of these phenomena was made.Levelt and Cutler (1983) examined the intonational marking of repairs in a corpus of elicited task-orientedspeech. They hypothesized that the tendency to mark repairs by accenting the correcting material variesaccording to semantico-pragmatic properties of the repair utterance. In their corpus, they found that repairsof erroneous information (error repairs) tended to be marked by increased intonational prominence onthe correcting information, while other kinds of repairs, such as additions to descriptions (which they labeledappropriateness repairs), generally were not.Bear et al. (1992) noted acoustic di�erences between true repairs and false positives for repairs thatmatched two lexical patterns. For repetitions of single words (matching pattern M j M ), true repairs andfalse positives were reliably distinguished based on the pausal duration within the matched material; forinsertions of single words (matching pattern M j XM ), true repairs were distinguished on the basis ofchanges in fundamental frequency (f0) and pausal duration. The lack of intonational prominence forrepairs matching the �rst pattern is consistent with Levelt and Cutler's claim, since lexical repetitions are



Nakatani&Hirschberg, JASA 6not error repairs. Bear et al. also noted that glottalization may occur at the point of interruption, especiallyon vowel-�nal fragments.O'Shaughnessy (1992) described repairs in a sample of utterances selected from the arpa Airline Traveland Information System (atis) corpus and also investigated pausal duration and intonational prominence aspotential correlates of repairs. He found that pausal duration ranged from 100 to 400 milliseconds for 85%of the repairs in his sample. He further reported that repeated words were either uttered with little prosodicchange (consistent with previous �ndings on repetitions) or were shortened by up to 50% of their expectedduration, and that substituted or inserted words which added new semantic content to the discourse wereintonationally marked in terms of lengthening and higher fundamental frequency, consistent with (Leveltand Cutler, 1983).Howell and Young (1991) analyzed the pausal and intonational characteristics of repairs in a corpus ofconversations between two or more speakers. They identi�ed pause at the interruption site and an increasein intonational prominence at the start of an altered or corrected word as common repair features. Theseprosodic markings occurred less frequently in repairs involving lexical repetition. The e�ect of these cueson human processing was tested in a series of experiments in which subjects listened to synthesized stimuliwith these features systematically varied. In one task, subjects were asked to judge the comprehensibility ofthe synthesized speech. In another task, they were asked to produce the corrected version of the synthesizedrepair utterance. Results showed that pauses and increased intonational prominence helped listeners processrepairs, although the facilitative e�ect of pauses alone was stronger than that of marked accenting alone.Also, the facilitative e�ects of both cues were stronger for repairs involving lexical alterations than for thoseinvolving only lexical repetitions, which is consistent with the results of the initial descriptive study.Finally, Lickley and colleagues (1991; 1992) carried out perceptual studies on human repair detectionusing naturally occurring stimuli. Results showed that subjects generally were able to detect a repair beforelexical access of the �rst word in the continuation of 
uent speech.The studies mentioned above describe acoustic and prosodic repair phenomena, and test these �ndingsin perception experiments or on small corpora. Some also investigate how certain phenomena are correlatedwith repair types. However, researchers have only begun to address issues concerning the modeling of repairphenomena in speech recognition systems and the design of algorithms and methods for automatic repairdetection and correction in spoken language systems. Our investigation of repairs addresses these areas ofrepair modeling and of algorithm development by (a) identifying robust cues to repair that do not rely onsophisticated understanding of the context or the classi�cation of the repair and thus may be detected \on-line" during speech recognition, and (b) exploring empirical methods, namely statistical prediction models,for integrating various cues to achieve automatic repair detection.II. The Repair Interval ModelTo provide a framework for our investigation of acoustic-prosodic cues to repair detection, we earlier proposeda model of repairs, the repair interval model (rim) (Nakatani and Hirschberg, 1993a; Nakatani andHirschberg, 1993b; Hirschberg and Nakatani, 1993). The rim model divides the repair event into threetemporal intervals and identi�es time points within those intervals that are computationally critical. A fullrepair comprises three continguous intervals, the reparandum interval, the disfluency interval, andthe repair interval. Following previous researchers, we identify the reparandum as the lexical materialwhich is to be repaired. The end of the reparandum coincides with the termination of the 
uent portion



Nakatani&Hirschberg, JASA 7of the utterance, which we term the interruption site (is). The disfluency interval (di) extendsfrom the is to the resumption of 
uent speech, and may contain any combination of silence, pause �llers(`e.g., uh', `um'), or cue phrases (e.g., `oops' or `I mean'), which indicate the speaker's recognition of hisor her performance error. The repair interval corresponds to the correcting material, which is intendedto `replace' the reparandum. It extends from the o�set of the di to the resumption of non-repair speech. InExample (7), for example, the reparandum occurs from 1 to 2, the di from 2 to 3, and the repair intervalfrom 3 to 4; the is occurs at 2.(7) Give me airlines 1 [ 
ying to Sa{ ] 2 [ SILENCE uh SILENCE ] 3 [ 
ying to Boston ] 4 from SanFrancisco next summer that have business class.As noted in Section I.A, Labov (1966) and Hindle (1983) hypothesized that an \edit signal" occurs at aparticular dis
uent point within repair utterances, a point in our rim model which we have labeled theis. However, our �ndings and recent psycholinguistic experiments (Lickley et al., 1991) suggest that thisproposal may be too limited. So, in this work, we extend Labov's and Hindle's notion of the edit signal toinclude any phenomenon which may contribute to the perception of an \abrupt cut-o�" of the speech signal| including cues such as coarticulation phenomena, word fragments, interruption glottalization, pause, andother prosodic cues which occur in the vicinity of the dis
uency interval. The rim model thus incorporatesthe edit signal hypothesis, that some aspect of the speech signal may demarcate the computationally keyjuncture between the reparandum and repair intervals, while extending its possible acoustic and prosodicmanifestations.As noted in Section I.A, previous acoustic-prosodic and perceptual studies have identi�ed various prosodiccues to repair, such as intonational prominence and pausing, that do not necessarily occur at precisely the is.Guided by these past �ndings, we also examine in this study potential cues to repair that may occur duringthe material to be repaired or the repairing material itself. The rim model thus serves to focus our attentionon timepoints and intervals whose usefulness for automatic methods of repair detection and correction hasbeen established by previous computational or psycholinguistic research.III. Acoustic-Prosodic Characteristics of RepairsThe corpus for our studies consisted of 6414 utterances from the arpa Airline Travel and Information System(atis) database (MADCOW, 1992) collected at at&t, bbn, cmu, sri, and ti; these appear to be a subsetof the corpora used by (Shriberg et al., 1992) and (Bear et al., 1992). Of the total corpus of 6414 utterancesproduced by 122 speakers, 346 (5.4%) utterances contained at least one repair; in our pilot study of the sriand ti utterances only, we found that repairs occurred in 9.1% of the utterances (Nakatani and Hirschberg,1993a), a rate which is probably more accurate than the 5.4% we �nd in our current corpus, since repairsfor the pilot study were identi�ed from more accurate and detailed transcriptions than were available forthe current corpus. We de�ne repair for our purposes as the self-correction of one or more phonemes (up toand including sequences of words) in an utterance. We thus count as repairs utterances in which a speakerrepeats a word or partial word, as well as utterances in which �lled pauses or cue words occur immediatelyafter the self-interruption. Utterances in which �lled pauses or cue words occur without any self-correctionwere not classi�ed as repairs in this study.We developed our initial hypotheses from a pilot study of 146 repairs in the sri and ti databases(Nakatani and Hirschberg, 1993a). These hypotheses were tested on the three additional atis databases



Nakatani&Hirschberg, JASA 8(at&t, bbn, cmu). Orthographic transcriptions of all of the utterances were prepared by arpa contractorsaccording to standardized atis conventions. The speech we examined was labeled at Bell Laboratoriesfor word boundaries and for intonational prominences and phrasing following Pierrehumbert's descriptionof English intonation (Pierrehumbert, 1980). (Pierrehumbert's system distinguishes two levels of prosodicphrasing, the intonational phrase and the intermediate phrase; intonational phrases are composedof one or more intermediate phrases, plus a high or low boundary tone, which controls the pitch at theedge of the phrase. Intermediate phrases are composed of one or more pitch accents from an inventoryof six accent types, plus a phrase accent, again, high or low, which controls the pitch from the last pitchaccent to the end of the intermediate phrase.) Also, each of the three rim intervals, together with prosodicand acoustic events within those intervals were labeled. Speech analysis was done with Entropic ResearchLaboratory's waves software (Talkin, 1989).A. Empirical Results: The Reparandum IntervalIn the rim model, the reparandum interval contains the material to be corrected or replaced by the contentsof the repair interval. Our acoustic and prosodic analysis of the reparandum interval focuses on acoustic-phonetic properties of word fragments, as well as additional phonetic cues marking the reparandum o�set.No reliable cues were found at the reparandum onset. However, we did �nd some potentially useful cues torepairs at the reparandum o�set.1. Onset of ReparandumFrom the point of view of repair detection and correction, acoustic-prosodic cues to the onset of the reparan-dum would clearly be useful in the choice of appropriate correction strategy. One potential prosodic cueto the location of this site might be a phrase boundary marking the beginning of the reparandum interval.Analysis of the ti set uncovered little support for this hypothesis, since a prosodic phrase boundary occurredat the reparandum onset in less than half (42.9%) of the utterances.This lack of prosodic cues at the reparandum onset is consistent with psycholinguistic �ndings. As notedin Section I.B, recent perceptual experiments indicate that humans are not able to detect an oncomingdis
uency as early as the onset of the reparandum (Lickley et al., 1991; Lickley and Bard, 1992). Subjects inthese experiments were presented with successively longer portions of utterances containing repairs and wereasked to evaluate whether the partial utterance was \
uent" or \un
uent" up to the end of the stimulus.Judgments as to whether the utterance would continue in a \
uent" or \un
uent" manner were also collected.Subjects were generally able to detect dis
uencies before lexical access of the �rst word in the repair. In afew cases where the pause was obviously long, or a word was clearly cut o�, subjects detected dis
uenciesbefore the start of the repair interval. It should be noted however that only a small number of the test stimulicontained reparanda ending in word fragments (Lickley et al., 1991). In any case, results clearly show thathuman listeners cannot reliably predict upcoming dis
uencies in the region of the onset of the reparandum.2. O�set of reparandumIn our corpus, 73.3% (298/382) of all reparanda end in word fragments. This �nding is somewhat higherthan Shriberg et al. (1992)'s report that 60.2% of repairs in their corpus contained fragments. Levelt (1983)reports a rate of 22% for spontaneous speech elicited in an instruction-giving task involving only humans



Nakatani&Hirschberg, JASA 9and no computer systems. Lickley (1993) reports a rate of 36% for a corpus of spontaneous conversationsby six speakers. The disparity among di�erent corpora remains to be accounted for. Nevertheless, anycorrelation between rate of fragmentation and spoken language genre should be of interest to researchersdeveloping cognitive theories of monitoring and repair. Since the majority of our repairs involve wordfragmentation, we analyzed several lexical and acoustic-phonetic properties of fragments for potential use infragment identi�cation. In our corpus, it is always the case that when a word is fragmented, it is meant tobe replaced by some item in the repair interval. Therefore, the interruption of a word is a sure sign of repair,and so we expect that the ability to distinguish word fragments from non-fragments would be a signi�cantaid for repair detection.Table 1 shows the broad word class of the speaker's intended word for each fragment, where the intendedword was recoverable by the atis transcribers.Table 1 goes here.Fragmentation at the reparandum o�set tended to occur in content words (43%) rather than function words(5%), while 52% of intended words were left untranscribed. Table 2 shows the distribution of fragments inour corpus by length. 91% of fragments were one syllable or less in length. Note that O'Shaughnessy (1992)reports that about three-quarters of the fragments in his sample of the atis corpus did not have a completionof the vowel in the �rst syllable. Table 2 goes here.While fragments themselves tend to be very short, it is not the case that the reparanda in which fragmentsoccur are signi�cantly shorter than non-fragment reparanda, where reparandum length is measured in numberof words. In Table 3, there is no signi�cant di�erence between the distributions of reparanda lengths forfragment and non-fragment repairs (p<.20, �=6.03, df=4).Table 3 goes here.Over one third of fragment reparanda consist of more than simply the fragment. A simple correctionheuristic, such as deleting just the fragment portion of the reparandum, might prove e�ective in many cases,but will not provide a general solution to fragment repair correction.Table 4 shows the distribution of initial phonemes for all words in the corpus of 6414 atis sentences, andfor all fragments, single syllable fragments, and single consonant fragments in repair utterances.Table 4 goes here.From Table 4 we see that single consonant fragments that are fricatives occur more than six times asoften as those that are stops. However, fricatives and stops occur almost equally as the initial consonantin single syllable fragments. Furthermore, we observe two divergences from the underlying distributions ofinitial phonemes for all words in the corpus. Vowel-initial words are less likely to occur as fragments andfricative-initial words more likely to occur as fragments, relative to the underlying distributions for thoseclasses in the corpus as a whole. Both the overall and repair distributions (p<.0001, � = 32.88, df=4) andthe single consonant and single syllable distributions (p<.0001, � = 66.27, df=4) di�er signi�cantly.It is possible that the imbalance of content and function words as transcribed intended words for fragments(Table 1) might be due to the general di�erences in length between content and function words. However,



Nakatani&Hirschberg, JASA 10our �nding that 90% of all fragments in our corpus are one syllable or less in length (Table 2) providesevidence against this interpretation, since both content and function words are at least one syllable long inEnglish. It might also be thought that the distribution patterns of the initial phoneme (Table 4) might beexplained by the possibility that in our corpus fricatives, for example, occur more often as content wordsrather than function words. We cannot usefully address this question, however, since for over half of allfragments in our corpus the intended word was not recoverable by atis transcribers.Two additional acoustic-phonetic cues, glottalization and coarticulation, may help to identify reparandao�sets, especially those ending in fragments. Bear et al. (1992) note that irregular glottal pulses sometimesoccur at the reparandum o�set. Shriberg et al. (1992) report glottalization on 24 of 25 vowel-�nal fragments.In our corpus, 30.2% of reparanda o�sets are marked by what we will term interruption glottalization.However, although interruption glottalization is usually associated with fragments, not all fragments areglottalized. In our database, 62% of fragments are not glottalized, and 9% of glottalized reparanda o�setsare not fragments. Evidently this acoustic-phonetic cue is not always or exclusively associated with wordfragmentation.Interruption glottalization appears to be acoustically distinct from laryngealization (creaky voice),which often occurs at the end of prosodic phrases; the latter typically extends over several syllables, if notwords, at the end of an intonational phrase and is associated with a decrease in energy, and low fundamentalfrequency (Olive et al., 1993). The glottalization we have observed over fragments in our corpus, on theother hand, generally occurs over only the interrupted syllable, and does not appear to be associated with asustained decrease in energy and fundamental frequency, in contrast to phrase-�nal laryngealization.We suspect that this phenomenon of interruption glottalization is akin to one investigated by Local andKelly (1986). In their study, Local and Kelly report on the acoustic-phonetic correlates of self-interruption.They identify the phenomenon of holding silences on discourse connectives, which they speculate servethe general communicative function of holding the 
oor, and thus can be associated as well with cases ofrepair. They characterize these silences in spontaneous speech asinitiated by glottal closure and terminated by glottal release with closed glottis being maintainedduring the intervening period. Now this kind of `closure piece' [: : : ] appear[s] to correlate withholding of turns and the projection that there will be further talk by the same speaker (Localand Kelly, 1986, p. 192).Also, they report no noticeable decrease in rate or amplitude for holding silences. These properties describeoccurrences of conjunctions in their corpus, such as well, but, so, uh, although they speculate that thephonetic features of holding silences might be generally available as means for the speaker to locally indicatethat he or she intends to continue speaking. Interestingly, for certain cases of repairs and reactions toincursive talk by a conversational partner, Local and Kelly report that creaky voice, or irregular glottalpulses, accompany the glottal closure, again without diminuation of tempo or loudness. The similaritiesbetween holding silences and repairs exhibiting interruption glottalization suggest that these phenomena arelinked by more general principles governing the mechanisms of spoken language interaction.One other acoustic-phonetic feature which sometimes characterizes words or word fragments at the endof the reparandum interval is the presence of coarticulatory gestures preceding silence. Sonorant endings ofboth fragments and non-fragments in our corpus sometimes exhibit coarticulatory e�ects of an acousticallyunrealized subsequent phoneme. A related feature is the lack of phrase-�nal lengthening e�ects on the lastfew segments in the reparandum for many cases of repairs. More generally, both of these features are cues



Nakatani&Hirschberg, JASA 11to dis
uency in the rhythmic structure of pre-pausal segments. These e�ects might be used to distinguishthe o�sets of reparanda from 
uent phrase o�sets. Acoustic models might directly encode information thatwould distinguish fragment-�nal phonemes from 
uent phrase-�nal phonemes. For fricatives immediatelypreceding silence, for example, one might compare duration, energy, and spectral characteristics. For vowelspreceding silence, the presence of certain coarticulatory patterns (e.g. stop closure, velar pinch) mightpositively identify a vowel as fragment-�nal, since 
uent phrase-�nal vowels followed by silence show no suche�ects of coarticulation.To summarize, in our corpus, most reparanda o�sets end in word fragments. Transcribers often cannotrecover the intended word from repair fragments in our corpus, but the majority of recovered intended wordsare content words. Fragments are rarely more than one syllable long, exhibit di�erent distributions of initialphoneme class depending on their length, are sometimes glottalized, and sometimes exhibit coarticulatorye�ects of acoustically missing subsequent phonemes. Procedures for fragment detection might make use ofinitial phoneme distributions, in combination with information on fragment length and acoustic-phoneticevents at the is. Inquiry into further acoustic-phonetic properties and the articulatory bases of several ofthese properties of self-interrupted speech, such as glottalization and initial phoneme distributions, mayfurther improve the modeling of segments at the reparandum o�set.B. Empirical Results: The Dis
uency IntervalIn the rim model, the di includes all cue phrases and all �lled and un�lled pauses from the o�set of thereparandum to the onset of the repair. The literature contains a number of �ndings concerning thesephenomena in the di, such as (Levelt, 1983; Blackmer and Mitton, 1991; Shriberg et al., 1992; O'Shaughnessy,1992). While our own �ndings provide little evidence that cue phrases or �lled pauses are reliable markersof repairs, we do �nd the duration of silent pauses to be a reliable characteristic of the di. In particular, ourdata support a new hypothesis associating fragment repairs and the duration of pause following the is.1. Filled Pauses and Cue PhrasesFilled pauses and cue phrases have been hypothesized as repair cues by Levelt (1983) and by Blackmer andMitton (1991). In our corpus, such phenomena occur in the di for only 9.4% (36/382) of repairs. Interestingly,as shown in Table 5, pause �llers and cue phrases occur signi�cantly more often in non-fragment repairsthan in fragment repairs (p<.0001, �=16.91, df=1).Table 5 goes here.2. Duration of the Dis
uency IntervalDuration of pause following the is also distinguishes between non-fragment and fragment repairs. Table 6shows the average duration of `silent dis' (i.e. those containing no pause �llers or cue words) compared tothat of 
uent utterance-internal silent pauses (i.e. those which independent labelers had not classi�ed ashesitations, repairs, or other dis
uencies) for the ti utterances in our corpus.1Table 6 goes here.



Nakatani&Hirschberg, JASA 12Overall, silent dis are shorter than 
uent pauses (p<.001, t =4.65, df=1530). If we analyze repairutterances based on occurrence of fragments, the di duration for fragment repairs is signi�cantly shorterthan for non-fragment repairs (p<.001, t=3.67, df=344). The fragment repair di duration is also signi�cantlyshorter than 
uent pause intervals (p<.001, t=5.20, df=1448), while there is no signi�cant di�erence betweennon-fragment repairs dis and 
uent phrase boundaries. So, dis in general appear to be distinct from 
uentphrase boundaries. In particular, pausal duration might be exploited to 
ag potential fragment repairs.While we do not make speci�c claims about the higher-level cognitive processes involved in making repairs,we do note that our �ndings present new facts to be accounted for by current psycholinguistic theories ofmonitoring and repair. The association of fragment repairs with shorter, usually un�lled, dis
uency intervalssuggests that, when a speaker interrupts him or herself in mid-word, less time is required to initiate theproduction of the repairing material than is the case for non-fragment repairs. It has been widely assumedthat the replanning process begins no sooner than the point of interruption (Levelt, 1983; Levelt, 1989). If thisassumption is to be maintained, then the phenomenon of word fragmentation somehow must be associatedwith repair types requiring less replanning than other repair types. Alternatively, our duration �ndingsmight be interpreted as support for the alternative notion that the duration of the dis
uency interval doesnot exactly re
ect the time required to replan. Rather, a theory of monitoring may allow that incrementalplanning and replanning of speech occur during both silence and speaking, as suggested by Blackmer andMitton (1991, p. 175).Finally, we tested a proposal made by O'Shaughnessy (1992) that pausal duration might be used toidentify candidate repair sites. Since this proposal was also based on an analysis of a sample from the atiscorpus, we would expect similar results. O'Shaughnessy suggests that an upper bound of 400 ms on pauseduration can be used to identify the dis
uency intervals of potential repairs. For his corpus of 115 atisrepairs, he reports recall of 70% and precision of 65% using this measure. He also proposes that 80 msrepresents a lower bound for is pauses, although he did not test this in his corpus. We tested his proposalsfor an upper bound only and for both upper and lower bounds on our corpus of 346 repair utterances.If we try to distinguish repairs from all other potential boundary sites in this data (N=6150 | includingnon-repair dis
uencies and simple word boundaries, as well as 
uent phrase boundaries), the 400 ms cuto�proposal identi�es 316 of the 390 observed repairs, for a recall of 81%; however, this criterion produces 4860false positives, for a precision of 6.1%. Precision improves and recall degrades when the lower bound forpauses is added to the prediction | to 53% recall and 34% precision. We conclude that neither proposalyields very reliable results on our corpus. If we eliminate other junctures (i.e., word boundaries and non-repair dis
uences), is sites can be distinguished from 
uent pauses using the simple 400 ms cuto� with 81%recall and 34% precision, while the addition of the lower bound degrades performance to 53% recall and 39%precision. In all cases though, the large number of false positives makes the use of pausal duration alone arather unreliable criterion for identifying repairs. If, in fact, we look at our entire labeled ti corpus, the 400ms upper bound for is pausal duration would select fully 58% of all 
uent phrase boundaries as potentialrepair sites.O'Shaughnessy proposes that output from this detection method be �ltered subsequently by searching foridentical spectral-time patterns in the speech signal in the immediate areas on either side of the dis
uencyinterval. This spectral-time pattern matching approach can be viewed as approximating the process oflexical pattern matching at the signal level. Whether spectral-time pattern matching can aid repair detectionremains to be seen, but we believe this proposal merits further examination. Our results from statisticalmodeling of repair detection, discussed in Section IV, support the combination of pattern-matching andpause duration information.



Nakatani&Hirschberg, JASA 133. Prosodic Marking Across the Dis
uency IntervalSeveral in
uential studies of acoustic-prosodic repair cues have relied upon lexical, semantic, or pragmaticclassi�cation of repair types (Levelt and Cutler, 1983; Levelt, 1983). Levelt and Cutler (1983) claim thatrepairs of erroneous information (error repairs) are marked by increased intonational prominence onthe correcting information, while other categories, such as additions to descriptions (appropriatenessrepairs), generally are not. Results of perceptual studies (Howell and Young, 1991) indicate that humanscan indeed make use of marked prominence to correct repair utterances. To examine the possibility thatintonational prominence might be used in repair detection, we investigated relative pitch and amplitudeacross the di for all repairs in our corpus and compared these to the same measurements for 
uent pausesin the atis ti corpus.To obtain objective measures of relative prominence, we compared absolute f0 and energy in the sonorantcenter of the last accented lexical item in the reparandum with that of the �rst accented item in the repairinterval. (We performed the same analysis for the last and �rst syllables in the reparandum and repair,respectively, and for normalized f0 and energy; results did not substantially di�er from those presentedhere.) We found a small but reliable increase in f0 from the end of the reparandum to the beginning of therepair (mean=+4.1 Hz, p<.01, t=2.49, df=327). There was also a small but reliable increase in amplitudeacross the di (mean=+1.5 db, p<.001, t =6.07, df=327).We analyzed the same phenomena across utterance-internal 
uent pauses for the atis ti set and foundno reliable di�erences in either f0 or intensity; of course, this failure to �nd may have been due to the greatervariability in the 
uent population. When we compared the f0 and amplitude changes from reparandum torepair with those observed for 
uent pauses, we found no signi�cant di�erences between the two populations.So, while di�erences in f0 and amplitude exist between the reparandum o�set and the repair onset, weconclude that these di�erences are probably too small to help distinguish repairs in general from 
uentspeech.Although it is not entirely straightforward to compare our objective measures of intonational prominencewith Levelt and Cutler's perceptual �ndings, our results provide only weak support for theirs. While we �ndsmall but signi�cant changes in two correlates of intonational prominence, the distributions of change in f0and energy for our data are unimodal and the distribution's center is only slightly above zero. Note thatour loci of measurement do not correspond precisely to Levelt and Cutler's, since we examined the syllablesimmediately surrounding the dis
uency interval.We would emphasize that the analysis reported above was aimed at the discovery of general cues torepairs. The study by Levelt and Cutler (1983) uncovered only tendencies for markedness. For example,only 53% of their error repairs were judged to be intonationally `marked'. A study by Howell and Young(1991) showed similarly that intonational `marking', measured in terms of increased intonational prominence,does not occur consistently in repairs. Howell and Young conducted a careful analysis of relative changesin stress levels for repairs in a spontaneous speech corpus that had been independently annotated for threelevels of intonational prominence (primary, secondary, and zero stress). They found that the stress levels forpairs of repeated words or pairs of altered words were the same in 72% of cases. For 24%, the stress on therelevant word in the repair was marked with a higher level of stress, while the stress level on the `repairing'word was lower in only 4% of cases. It may therefore be a better strategy to use a decrease in prominenceto rule out potential repairs instead of using increased prominence to positively identify repairs.



Nakatani&Hirschberg, JASA 14C. Empirical Results: The Repair IntervalPrevious studies of dis
uency have paid considerable attention to the vicinity of the di but little to the repairo�set. The analyses reported above for the reparandum interval and the dis
uency interval concentrated oncues for repair detection. Our rim analysis of the repair interval uncovered one general intonational cue thatmay be of use for repair correction, namely the prosodic phrasing of the repair interval. We found evidencethat phrase boundaries at the repair o�set can serve to delimit the region over which subsequent correctionstrategies may operate.First, we tested the hypothesis that repair interval o�sets are marked by the presence of intonationalphrase boundaries by examiningwhether phrase boundaries observed at that o�set di�ered in their occurrencefrom those observed in 
uent speech for the ti corpus as a whole; this corpus had previously been labeledat Bell Laboratories for studies on phrasing by Wang and Hirschberg (1992).Using Wang and Hirschberg's (1992) phrase prediction procedure, with prediction trained on 478 sen-tences of read, 
uent speech from the atis ti read corpus, we estimated whether the phrasing at the repairo�set was predictably distinct from this model of 
uent phrasing.2 To see whether these boundaries weredistinct from those in 
uent speech, we compared the phrasing of repair utterances with the phrasing pre-dicted for the corresponding corrected version of the utterance as identi�ed by atis transcribers. Resultsreported here are for prediction on only the 63 ti repair utterances, since the prediction tree we used hadbeen developed on ti utterances.We found that in these 63 utterances the repair o�set co-occurs with minor or major phrase boundariesfor 49% of repairs. For 40% of all repairs, an observed boundary occurs at the repair o�set where one ispredicted in 
uent speech; and for 33% of all repairs, no boundary is observed where none is predicted. Forthe remaining 27% of repairs, observed phrasing diverges from that predicted by a 
uent phrasing model. In37% of these latter cases, a boundary occurs where none is predicted, and, in the remainder, no boundaryoccurrs when one is predicted.We also found more general di�erences from predicted phrasing over the entire repair interval. Twostrong predictors of prosodic phrasing in 
uent speech are syntactic constituency (Cooper and Sorenson,1977; Gee and Grosjean, 1983; Selkirk, 1984), especially the relative inviolability of noun phrases (Wang andHirschberg, 1992), and the length of prosodic phrases (Gee and Grosjean, 1983). In our repair utterances,we observed phrase boundaries at repair o�sets which occurred within larger nps, as in Example (8); actualprosodic boundaries in (8a) and (9a) are indicated by `j', and predicted prosodic boundaries by `k' in (8b)and (9b).In (8), the boundaries which di�er from those predicted for 
uent speech surround the modi�er `round-trip'; it is precisely this modi�er | not the entire noun phrase | which is being corrected in this utterance.(8) a. Actual phrasing: Show me all n{ j round-trip j 
ights j from Pittsburgh j to Atlanta.b. Predicted phrasing: Show me all k round-trip 
ights k from Pittsburgh k to Atlanta.It seems plausible that, by marking o� the modi�er intonationally, a speaker may signal that operationsrelating just this phrase to an earlier portion of the utterance can achieve the proper correction of thedis
uency.We also found cases in which intonational phrases observed in repair utterances were much longer thanphrases observed in 
uent speech, as illustrated in Example (9).(9) a. Actual phrasing: What airport is it j is located j what is the name of the airport located inSan Francisco.



Nakatani&Hirschberg, JASA 15b. Predicted phrasing: What is the name k of the airport k located k in San Francisco.The corresponding 
uent version of the repair interval is predicted to contain four intonational phrases. Insuch cases, the absence of intonational phrase boundaries may serve to identify the entire repair (e.g., `whatis the name of the airport located in San Francisco') as a substituting unit. Thus, in both these cases, themarked phrasing of the repair interval delimits a meaningful unit for subsequent correction strategies.Second, we analyzed the syntactic and lexical properties of the �rst major or minor intonational phraseincluding all or part of the repair interval to determine how such phrasal units corresponded to the repairtypes in Hindle's typology. We wanted to investigate correspondences between intonational phrasing andsyntactic characterization of repair type. We found three major classes of phrasing behaviors. First, for43% (165/382) of repairs, the repair o�set we had initially identi�ed (choosing the strategy of identifyingthe minimal string-length repair) coincides with a phrase boundary, which can thus be said to mark o� therepair interval. Note crucially here that, in labeling repairs which might be viewed as either constituent orlexical, we had originally preferred the shorter lexical analysis by default. Of the remaining 217 repairs, 70%(151/217) have the �rst phrase boundary after the repair onset at the right edge of a syntactic constituent. Itis possible that this set of repairs is more appropriately identi�ed as Hindle's constituent repairs, rather thanthe lexical repairs we had initially labeled. For the majority of these constituent repairs (77%, 117/151),the repair interval contains a well-formed syntactic constituent (See Table 7). If the repair interval does notform a syntactic constituent, it is most often an np-internal repair (74%, 25/34).Table 7 goes here.The third class of repairs includes those in which the �rst boundary after the repair onset occurs neitherat the repair o�set nor at the right edge of a syntactic constituent. This class contains lexical repairs (e.g.Example (8)), phonetic errors, word insertions, and syntactic reformulations.Investigation of repair phrasing in other corpora covering a wider variety of genres is needed in order toassess the generality of these �ndings. For example, 33% (8/24) of np-internal constituent repairs occurredwithin cardinal compounds (e.g. Example (3)), which occur often in the atis travel information domain.Nonetheless, the fact that repair o�sets in our corpus are marked by intonational phrase boundaries in such alarge percentage of cases (83%, 316/382) suggests that this cue may prove quite valuable for repair processingby delimiting the interval over which correction strategies may operate.D. Summary of rim ResultsUsing the rim framework, we have investigated a number of acoustic-prosodic cues to the identi�cation ofrepairs in spontaneous speech. Our analysis of repairs in the atis corpus indicates that self-interruptionmay be signalled by a number of di�erent cues, including word fragmentation, glottalization, coarticulatorye�ects preceding silent pauses, and the duration of the dis
uency interval itself. We have identi�ed severalfeatures to aid in fragment identi�cation, such as the distributions of fragments by length and by initialphoneme. In addition to these reparandum interval and dis
uency interval cues for repair detection, we haveexamined the phrasing of the repair interval for possible cues for repair correction. We have determined thatrepair intervals di�er from 
uent speech in their characteristic prosodic phrasing, and identi�ed several rolesprosody appears to play in delimiting the repair interval for correction strategies. Given these results, wenext turn to their potential use in repair detection.



Nakatani&Hirschberg, JASA 16IV. Predicting Repairs from Acoustic and Prosodic CuesDespite the moderate size of our sample, we were interested in exploring the question of how well thecharacterization of repairs derived from rim analysis of the atis corpus would transfer to a predictive modelfor locating the is of self-repairs in that domain. We also wanted to investigate how acoustic cues might becombined with the sort of text-based cues which have previously been used with some success by others topredict repair locations (e.g. (Bear et al., 1992)) to improve the predictive power of such text-based cues.To this end, we examined 350 atis repair utterances, including the 346 used for the descriptive study. Weused the 148 ti and sri repair utterances used in the initial descriptive study (Nakatani and Hirschberg,1993a) as training data; the additional 202 repair utterances (containing 223 repair instances) were used fortesting. In our predictions, we attempted to distinguish repair is from 
uent phrase boundaries (collapsingmajor and minor boundaries), non-repair dis
uencies (which had been marked independently of our study| see note 1) and simple word boundaries. We considered every word boundary to be a potential repair site;we also included utterance-�nal boundaries as data points, to distinguish 
uent interruptions of the speechsignal from non-
uent and for consistency with the prior labelings of our 
uent utterances. Thus, our goalwas to locate self repairs by distinguishing their iss from all potential iss in our test data.Since each utterance in our test set did in fact contain at least one such is, this experiment was notequivalent to locating self repairs in general spontaneous speech; the ratio of is to non-is data points isconsiderably greater in our test set. However, utterances could contain more than one repair, so the taskwas not simply to locate the most likely repair site within an utterance. Nonetheless, our �ndings should beseen more as indicative of the relative importance of various predictors of is location than as a true test ofrepair site location.Data points are represented below as ordered pairs < wi; wj >, where wi represents the lexical item tothe left of the potential is and wj represents that on the right. For each < wi; wj >, we examined thefollowing features as potential is predictors: (a) the duration of pause between wi and wj; (b) the occurrenceof one or more word fragments within the < wi; wj > interval; (c) the occurrence of a �lled pause in the< wi; wj > interval; (d) the amplitude (energy) peak within wi | both absolute and normalized for theutterance; (e) the amplitude of wi relative to wi�1 and to wj; (f) the absolute and normalized f0 of wi;(g) the f0 of wi relative to wi�1 and to wj; (h) and wi's accent status (accented or deaccented). We alsosimulated some simple pattern matching strategies, to see how acoustic-prosodic cues might interact withlexical cues in repair identi�cation. To this end, we looked at (i) the distance in number of words of wi fromthe beginning and end of the utterance; (j) the total number of words in the utterance; (k) whether wi orwi�1 recurred in the utterance within a window of three words after wi; (l) a part-of-speech window of fouraround the potential is; and (m) whether, in cases where wi and wj were function words, they shared thesame part-of-speech (e.g. prep prep).We were unable to test other acoustic-prosodic features that we had examined in our descriptive analysis,since features such as glottalization and coarticulatory e�ects had not been labeled in our database forregions other than dis. Also, we used fairly crude measures to approximate features such as change in f0and amplitude, since these too had been precisely labeled in our corpus only for repair locations and not for
uent speech. We used uniform measures for prediction, however, for both repair sites and 
uent regions.We trained prediction trees using Classification and Regression Tree (cart) techniques (Breimanet al., 1984) given these features. cart techniques can be used to generate decision trees from sets ofcontinuous and discrete variables by using sets of splitting rules, stopping rules, and prediction rules. Theserules a�ect the internal nodes, subtree height, and terminal nodes, respectively. At each internal node, cart



Nakatani&Hirschberg, JASA 17determines which factor should govern the forking of two paths from that node. Furthermore, cart mustdecide which values of the factor to associate with each path. Ideally, the splitting rules should choose thefactor and value split which minimizes the prediction error rate. The splitting rules in the implementationemployed for our study (Riley, 1989) approximate optimality by choosing at each node the split whichminimizes the prediction error rate on the training data. In this implementation, all these decisions arebinary, based upon consideration of each possible binary partition of values of categorical variables andconsideration of di�erent cut-points for values of continuous variables. Stopping rules terminate the splittingprocess at each internal node. To determine the best tree, this implementation uses two sets of stopping rules.The �rst set is extremely conservative, resulting in an overly large tree, which usually lacks the generalitynecessary to account for data outside of the training set. To compensate, the second rule set forms a sequenceof subtrees. Each tree is grown on a sizable fraction of the training data and tested on the remaining portion.This step is repeated until the tree has been grown and tested on all of the data. The stopping rules thushave access to cross-validated error rates for each subtree. The subtree with the lowest rate then de�nesthe stopping point for each path in the full tree. Trees described below all represent cross-validated data.The prediction rules work in a straightforward manner to add the necessary labels to the terminal nodes.For continuous variables, the rules calculate the mean of the data points classi�ed together at that node.For categorical variables, the rules choose the class that occurs most frequently among the data points. Thesuccess of these rules can be measured through estimates of deviation. In this implementation, the deviationfor continuous variables is the sum of the squared error for the observations. The deviation for categoricalvariables is simply the number of misclassi�ed observations.The best prediction tree trained on our 148 utterance training set was then used to predict is boundarylocations in our test set. This tree is illustrated in Figure V..Figure V. goes here.The variables represented in this tree | those that cart found most useful in predicting the training data| include pause, the duration of pause between wi and wj; frag, the presence of one or more word fragmentsin the di between wi and wj; �lled, the presence of a �lled pause in the di; lex, a repetition of wi withina window of three words to its right (measured in terms of distance in words of the repetition from wi);prevlex, a repetion of wi�1 within a window of three to the right of wi (also measured by distance from wi);dups, duplication of function words with the same part of speech across the potential dis
uency site; j4f, thepart of speech of wj+1; and f0, the peak f0 of wi. The node labels are phrase, a 
uent phrase boundary; is,the is of a self-repair; odis
, the site of a non-repair dis
uency; and na, for simple word boundaries.When this tree is used to predict the test set, it identi�es 192 of the 223 observed repairs, with 19false positives, representing a recall of 86.1% and precision of 91.2%. Note that all repairs are identi�edin part by the duration of the interval between wi and wj. Fully 106 of the correctly identi�ed iss werealso distinguished by the presence of word fragments in the di. Others were identi�ed from (a) pause �llerand part-of-speech information; (b) lexical matching across the di; and (c) duplication of part-of-speechacross the di. The utility of combining general acoustic-prosodic constraints with lexical pattern matchingtechniques as a strategy for repair identi�cation thus appears to gain support from this experiment.The prediction tree in Figure V. utilizes certain features hypothesized to be critical for repair identi�ca-tion. For example, the presence of a pause appears at the top of the tree as a strong predictor of repairs.In the tree in Figure V., the presence of a pause is a necessary condition for a repair, although it is not asu�cient one, as discussed in Section III.B.2. The presence of a word fragment at the IS, which characterizesthe majority of repairs in our corpus, turned out to be the next strongest predictor in the tree. As proposed



Nakatani&Hirschberg, JASA 18in the literature, �lled pauses may indicate repair, but since 
uent phrases and other dis
uencies such ashesitations may also be marked by �lled pauses, this cue is more productively used in combination withother lexical and prosodic cues as shown in Figure V.. Finally, the tree nodes lower in the tree that test forrepetitions of lexical items or part of speech within a small window, seem to capture lexical pattern matchinginformation.Several features that had been hypothesized to be strong repair cues do not in fact appear in the predictiontree in Figure V.. There are no nodes for repair identi�cation that specify maximumpausal duration duringthe DI, or that make reference to fundamental frequency or amplitude values, for example. As discussedin Section III.B.2, we found that pausal duration is most useful in distinguishing fragment DIs from non-fragment DIs, but less useful in distinguishing all DIs from 
uent pause intervals. We speculate that theabsence of such maximal pausal duration cues for the DI in the tree in Figure V. may be related to the factthat the presence of a fragment was directly represented in our cart modeling, enabling direct classi�cationof fragment repairs. Relative change in pitch and amplitude also have been claimed to be signi�cant repaircues in the literature but do not appear in the prediction tree. In Section III.B.3, we conjectured that sincethese cues are speci�c to certain repair types, and even then do not occur obligatorily to mark repair types,they would not serve as robust cues to repair.Although the practical integration of our acoustic-prosodic �ndings with existing proposals for repairdetection and correction remains to be done, our predictive modeling of repairs in the atis domain usingcart analysis takes a �rst step in this direction. Larger corpora must be examined, but our results of 86%recall and 91% precision, while preliminary, provide additional evidence that su�cient cues may exist in thevicinity of the di to identify the majority of repairs in a local manner.V. DiscussionAs we noted in the introduction, one approach to repair processing is to compensate for speech recognitionerrors by employing robust parsing and interpretation techniques. Many text-based methods embody thisapproach by assuming hypothesized strings of text as input to repair processing strategies. In contrast,the motivation for this study was to explore the extent to which the speech technologies themselves maybe enhanced. To this end, we developed the repair interval model to provide a general model of thetemporal intervals that comprise a repair, and we explored a variety of acoustic and prosodic signals thatmay be associated with computationally critical regions of these intervals. Several repair cues identi�ed byour analysis also proved useful in statistical prediction models for repair.We conclude from our empirical investigations and statistical modeling of repairs that di�erent repairphenomena might be handled most aptly by di�erent speech recognition technologies and techniques. Pausalduration cues to repair could be exploited in word-based recognition systems with accurate silence detectioncapabilities. Also within the word-based recognition paradigm, spectral-time pattern matching of repeatedwords might be implemented as an approximation of lexical pattern matching at the signal level. Thisprocedure conceivably could proceed before all word identities are hypothesized and could be triggered bythe presence of a pause.One problem that poses di�culties for word-based methods is that of detecting word fragments. A defaultstrategy that has been proposed for fragment recognition has been that all fragments in a corpus be treatedas instances of a single generic token. The length distributions and the wide phonetic and phonemic variationof fragments in our corpus suggest that a more fruitful approach might be to recognize fragments bottom-up



Nakatani&Hirschberg, JASA 19rather than top-down. Preliminary investigations suggest that phone-based recognizers may be well-suited tosuch a task. Informal testing of the phone-based recognizer described in (Ljolje and Riley, 1992) on a subsetof our corpus indicated that such a recognizer could identify many of our fragment phonemes in the samemanner as non-fragment phonemes | even certain fragment-�nal phonemes that were heavily coarticulatedwith their preceding phonemes. However, important theoretical questions remain concerning how fragmentsmay be recognized even given accurate phonemic transcriptions. In what manner do fragments violatephonotactic constraints? Can these be exploited in bottom-up prediction of fragment regions? Careful studyof the spectral and durational characteristics of abruptly cut o� segments are needed to determine whetherthese reparandum-�nal phonemes di�er signi�cantly enough from 
uent phrase-�nal phonemes to providedirect acoustic-phonetic evidence of repair.It appears likely that certain repair phenomena ultimately will receive an explanation in terms of theirarticulatory bases. The phenomenon of interruption glottalization and its related phenomenon of holdingsilences, together with other cases of partly articulated phonemes at the is, may best be modeled in termsof the partially completed articulatory gestures involved in their production.The phenomena realizing the interruption of 
uent speech can e�ect change at multiple levels of lan-guage, from the syntactic constituent to the phone. Thus, our models of repair must provide for phonemefragments as well as sentence and word fragments. Viewed from this perspective, the speech processing ofrepairs presents itself as a promising area in which to explore the integration of various paradigms of speechprocessing in a productively focused manner. Our study illuminates some of the ways in which variousaspects of this problem can be directly modeled in speech recognition and spoken language understandingsystems.AcknowledgmentsWe thank John Bear, Mary Beckman, John Coleman, Barbara Grosz, Don Hindle, Chin Hui Lee, RobinLickley, Andrej Ljolje, Joe Olive, Jan van Santen, Stuart Shieber, Liz Shriberg, and two anonymous reviewersfor advice and useful comments. cart analysis employed software written by Daryl Pregibon and MichaelRiley at AT&T Bell Laboratories. The �rst author was partially supported by a National Science FoundationGraduate Research Fellowship.Notes1Here and below we treat the 
uent atis ti utterances as a sample corpus of 
uent atis utterances againstwhich we compare our repair corpus �ndings. The full atis ti corpus, including both repair and non-repairutterances, was independently labeled for a previous study: Labelers for this study,reported in (Wang andHirschberg, 1992), were told to mark the following dis
uencies: repair (self-correction of lexical material),hesitation (\unnatural" interruption of speech 
ow without any following correction of lexical material,including all events with some phonetic indicator of dis
uency that were not involved in a self-repair, suchas audible breath or sharp cut-o�), or other disfluency (material deemed dis
uent but not falling intoeither of the previous categories). See Wang and Hirschberg (1992) for further information on the labelingof this corpus.2Wang and Hirschberg use statistical modeling techniques to predict phrasing from a large corpus oflabeled atis speech; we used a prediction tree that achieves 88.4% (estimated) accuracy on the atis ti read



Nakatani&Hirschberg, JASA 20corpus using only features whose values could be calculated via automatic text analysis. These utterancescontained no dis
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Nakatani&Hirschberg, JASA 23Lexical Class Tokens %Content 128 43%Function 14 5%Untranscribed 156 52%Table 1: Lexical Class of Word Fragments at Reparandum O�set (N=298)Syllables Tokens %0 119 40%1 153 51%2 25 8%3 1 0.3%Table 2: Length of Reparandum O�set Word Fragments (N=298)Length Fragment Repairs Non-fragment Repairsin words N (280) % N (102) %1 183 65% 53 52%2 64 23% 33 32%3 18 6% 9 9%4 6 2% 2 2%5 or more 9 3% 5 5%Table 3: Length of Reparandum Interval for Fragment and Non-fragment RepairsClass of % of All % of All % of One Syllable % of One ConsonantInitial Phoneme Words Fragments Fragments Fragmentsstop 23% 23% 29% 12%vowel 25% 13% 20% 0%fricative 33% 44% 27% 72%nasal/glide/liquid 18% 17% 20% 15%h 1% 2% 4% 1%Total N 64896 298 153 119Table 4: Feature Class of Initial Phoneme in Fragments by Fragment LengthFilled Pauses/Cue Phrases Un�lled PauseFragment 16 264Non-fragment 20 82Table 5: Occurrences of Filled Pauses/Cue Phrases and Word Fragments



Nakatani&Hirschberg, JASA 24Pausal Juncture Mean Std Dev NFluent Pause 513 msec 676 msec 1186DI 334 msec 421 msec 346Fragment 289 msec 377 msec 264Non-fragment 481 msec 517 msec 82Table 6: Duration of Silent dis vs. Utterance-Internal Fluent PausesRepair Constituent Tokens %Noun phrase 42 36%Prepositional phrase 36 31%Sentence 24 21%Verb phrase 8 7%Participial phrase 6 5%Relative clause 1 0.9%Table 7: Distribution of Syntactic Categories for Exact Constituent Repairs (N=117)No Boundary Boundary ObservedNo Boundary 62.80% 3.73% 66.53%Boundary 4.57% 28.90% 33.47%Predicted 67.37% 32.63% 91.70%Table 8: CART Predictions on Read TI Utterances, N=5471
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FIG. V.. Predicting Dis
uencies From Acoustic and Lexical Information


