Models of Annotation (Il)

Bob Carpenter, LingPipe, Inc.
Massimo Poesio, Uni. Trento

LREC 2010 (Malta)



Mechanical Turk Examples

(Carpenter, Jamison and Baldwin, 2008)



Amazon’s Mechanical Turk

e “Crowdsourcing” Data Collection (Artificial Al)
e We provide web forms to Turkers (through REST API)
e We may give Turkers a qualifying/training test

e Turkers choose tasks to complete

— We have no control on assignment of tasks
— Different numbers of annotations per annotator

e Turkers fill out a form per task and submit
e We pay Turkers through Amazon

e We get results from Amazon in a CSV spreadsheet



Case 1: Named Entities
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Named Entities Worked

e Conveying the coding standard

— official MUC-6 standard dozens of pages
— examples are key

e Fitts’s Law
— time to position cursor inversely proportional to target size
— highlighting text: fine position + drag + position
— pulldown menus for type: position + pulldown + select

checkboxes for entity at a time: fat target click



Discussion: Named Entities

¢ 190K tokens, 64K capitalized, 4K person name tokens

— 4K/ 190K = 2.1% prevalence of entity tokens

10 annotators per token
100+ annotators, varying numbers of annotations

Less than a week at 2 cents/400 tokens (US$95)

Aggregated Turkers better than LDC data
— Correctly Rejected: Webster’s, Seagram, Du Pont,
Buick-Cadillac, Moon, erstwhile Phineas Foggs
— Incorrectly Accepted: Tass
— Missed Punctuation: J E. ¢ ‘Buster’’ Brown



Case 2: Morphological Stemming
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moths |moth
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plank [plank
hooey |hooey
mummies [mummy
panicking [panic
devoured |devour
videoconference |video conference
cafeteria |cafeteria

(1) Remove an affix, if there is one; (2) If there's no affix, insert a space into compound
words; (3) Delete misspelled words; (4) Leave everything else as-is.

Affixes include:

pre-, re-, un-, in-, and
others.

suffixes: -s, -ed, -ing, -er,
-est, -ion, -es, -est, -ism,
-ist, -ful, -able, -ation, -ness,
-ment, -ify, -ity, -ize, -ly, -y,
and others.

Remember:

+Remove just one affix
+The remaining word(s)
should have a related
meaning to the original.
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Morphological Stemming Worked

Coded and tested by intern (Emily Jamison of OSU)

— Less than one month to code, modify and collect

Three iterations of coding standard, Four of instructions

— began with full morphological segmentation (too hard)
— simplified task to one stem with full base (more “natural”)
— added previously confusing examples and sample affixes

Added qualifying test

60K (50K frequent Gigaword, 10K random) tokens

5 annotators / token



Generative Labeling Model

(Dawid and Skene 1979; Bruce and Wiebe 1999)



Assume Binary Labeling for Simplicity

e 0 ="“FALSE”, 1 = “TRUE” (arbitrary for task)

— e.g. Named entities: Token in Name = 1, not in Name = 0
— e.g. RTE-1: entailment = 1, non-entailment = 0
— e.g. Information Retrieval: relevant=1, irrelevant=0

e Models generalize to more than two categories
— e.g. Named Entities: PERS, LOC, ORG, NOT-IN-NAME

e Models generalize to ordinals or scalars

— e.g. Paper Review: 1-5 scale
— e.g. Sentiment: 1-100 scale of positivity



Prevalence

e Assumes binary categories (0 = “FALSE”, 1 = “TRUE”)

e Prevalence  is proportion of 1 labels

— e.g. RTE-1400/800 = 50% [artificially “balanced”]
— e.g. Sports articles (among all news articles): 15%
— e.g. Bridging anaphors (among all anaphors): 6%
— e.g. Person named entity tokens 4K/ 190K = 2.1%
— e.g. Zero (tennis) sense of “love” in newswire: 0.5%

— e.g. Relevant docs for web query [Malta LREC]:
500K/1T = 0.00005%



Gold-Standard Estimate of Prevalence

e Create gold-standard labels for a subset of data

— Choose the subset randomly from all unlabeled data
— Otherwise, may result in biased estimates

e Use proportion of 1 labels for prevalence = [MLE]

e More data produces more accurate estimates

— For N examples with prevalence , 95% interval is

— e.g. 100 samples, 20 positive, m = 0.20 + 0.08
Given fixed prevalence, uncertainty inversely proportional to /N
— The law of large numbers in action



Accuracies: Sensitivity and Specificity

Assumes binary categories (0 =“FALSE”, 1 = “TRUE”)

Reference is gold standard, Response from coder

) Resp=1 | Resp=0
Contingency Matrix Ref=1 | TP FN
Ref=0 | FP TN

Sensitivity = 8, = TP/(TP+FN) = Recall

— Accuracy on 1 (true) items

Specificity = 8y = TN/(TN+FP)  # Precision = TP/(TP+FP)

— Accuracy on 0 (false) items



Gold-Standard Estimate of Accuracies

Choose random set of positive (category 1) examples

Choose random set of negative (category 0) examples

Does not need to be balanced according to prevalence

Have annotator label the subsets

Use agreement on negatives for specificity 6, [MLE]

Use agreement on positives for sensitivity ¢; [MLE]

Again, more data means more accurate estimates



Generative Labeling Model

e Item i’s category ¢; € {0,1}
e Coder j’s specificity 6y ; € [0, 1]; sensitivity 6, ; € [0,1]
e Coder j’s label for item i: z; ; € {0,1}
o If category ¢; =1,
— Pr(z;; =1) =01,; [correctly labeled]
— Pr(z;; =0)=1—01
e If category ¢; =0,
— Pr(zi; =1)=1—6o;
— Pr(z; ; =0) =0y,; [correctly labeled]
o Pr(z;; =1lc,0) =cib1; + (1 —¢;)(1 —bo,)



Calculating Category Probabilities

e Given prevalence , specificities 6y, sensitivities 61, and
annotations «

e Bayes’s Rule
p(alb) = p(bla) p(a)/p(b)
o p(bla) p(a)
e Applied to Category Probabilities
p(cilzi, 0,m) oc p(ailei, 0,m) p(ci|0, )
= p(wilci, 0) plei|m)
p(cilm) H}]:l p(wijlci, 0)



Calculating Cat Probabilities: Example

e Prevalence: m =0.2

o Specificities: 6p,1 = 0.60; 62 = 0.70; 6p,3 = 0.80

e Sensitivities: 61,1 = 0.75; 61,2 = 0.65; 61,3 =0.90

e Annotations foritemi: x;1 =1, ;2 =1, ;3 =0

Pr(c; =110,2;) o< wPr(z; =(1,1,0)|0,¢; = 1)
0.2-0.75-0.65 - (1 — 0.90) = 0.00975

Pr(c; =0/6,z;) o« (1 —7)Pr(z; =(1,1,0)|0,¢; =0)
(1-0.2)-(1-0.6)-(1—0.7)-0.8 = 0.0768

Pr(c; = 1|0, z;) = T@gg%m —0.1126516



Bayesian Estimates
Example



Estimates Everything

e What if you don’t have a gold standard?

e We can estimate everything from annotations

— True category labels

— Prevalence

— Annotator sensitivities and specificities

— Mean sensitivity and specificity for pool of annotators
— Variability of annotator sensitivities and specificities

(Individual item labeling difficulty)



Analogy to Epidemiology and Testing

e Commonly used models for epidemiology

— Tests (e.g. blood, saliva, exam, x-ray, MRI, biopsy) like annota-
tors
— Prevalence of disease in population

— Diagnosis of individual patient like item labeling

e Commonly used models in educational testing

Annotators like test takers

Items like test questions
— Accuracies like test scores; error patterns are confusions

Interesed in difficulty and discriminativeness of questions



Five Dentists Diagnosing Caries

Dentists  Count | Dentists Count | Dentists  Count
00000 1880 10000 22 00001 789
10001 26 00010 43 10010 6
00011 75 10011 14 00100 23
10100 1 00101 63 10101 20
00110 8 10110 2 00111 22
10111 17 01000 188 11000 2
01001 191 11001 20 01010 17
11010 6 01011 67 11011 27
01100 15 11100 3 01101 85
11101 72 01110 8 11110 1
01111 56 11111 100

e Caries is a type of tooth pitting preceding a cavity
e Canimagine it's a binary NLP tagging task



Posterior Prevalence of Caries 7

e Histogram of Gibbs samples approximates posterior
e 95% interval (0.176, 0.215); Bayesian estimate 0.196
e Consensus estimate (all 1s) 0.026; Majority estimate (> 3 1s), 0.13

Posterior pi
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Posteriors for Dentist Accuracies
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e Posterior densities useful for downstream inference

e Mitigates overcertainty of point estimates



Posteriors for Dentistry Data ltems
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Marginal Evaluation

e Common evaluation in epidemiology uses x2 on marginals

Positive Posterior Quantiles
Tests  Frequency .025 ) 975

0 1880 | 1818 1877 1935

1 1065 | 1029 1068 1117

2 404 385 408 434

3 247 206 227 248

4 173 175 193 212

5 100 80 93 109

e Simpler models (all accuracies equal) are underdispersed (not enough
all-0 or all-1 results)

e Better marginal eval is over all items (e.g. 00100, 01101, ...)
e Accounting for item difficulty provides even tighter fit



Applications



Is the Truth Out There?

e Or are the “gold standards” just fool's gold?
e Evaluate uncertainty in item category with Pr(¢; = 1)
e Do all items even have true categories?

— Coding standard may be vague (e.g. “Mars” as location [MUC-

6])
— Distinguishing author/speaker intent from interpretation

e ltems often don’t have clear interpretation

— Some items hard to distinguish categorically (esp. metonymy)
— e.g. “New York” as team or location or political entity
— e.g. “p53” as gene/protein, wild/mutant, human/mouse



Evaluating Annotators

¢ Not all annotators have the same accuracy

Ideally, annotators have high sensitivity and specificity

Ideally annotators are unbiased

— Bias indicated by sensitivity >> specificity or vice-versa

Provide feedback to help annotators improve

Filter annotators to contribute to coding

Deciding how many annotators needed for an item



Evaluating “Gold” Labels

Get probabilities Pr(c; = 1)

Middling probabilities mean annotators uncertain

Find items for which annotators having difficulty

— Refine coding standard by adjudicating examples

(Alternative to explicitly modeling item difficulty)



Speed versus Accuracy

e Assume all we have goal for “gold standard” accuracy

e May be beneficial to trade accuracy for speed

— e.g. 150 items at 80% accuracy vs. 100 items at 90%
— Former may be better with voting with adjustment for accuracies

e Less-than-perfect gold standard acceptable for some tasks

— Many machine learning procedures robust to noise
— More problematic for evaluating “state of the art”



New ltems versus New Labels

e Evaluate whether to generate

— A new label for an uncertainly labeled item, or
— anew label for currently unlabeled item
— (Sheng, Provost and Ipeirotis 2009)

e Choose which annotator to label item

— Can measure expected gain in certainty given annotator accu-
racy

— Like active learning, only for annotators rather than items



Evaluating Coding Standard Difficulty

Replacement for x with predictive power for new anno-
tators

Allows inference on correctness of gold standard

Sensitivity and Specificity priors («, 3) model:

— Mean annotator accuracy
— Annotator variation
— Annotator bias

Low mean accuracy indicates a problematic coding stan-
dard



Probabilistic Training and Testing

e Use probabilistic item posteriors for training

Easy to generalize most probabilistic models

— e.g. naive Bayes or HMMs: proportional train (as for EM)

— e.g. logistic regression or CRFs: modify log loss

Generalize arbitrary model with posterior samples (e.g. SVMs)

e Use probabilistic item posteriors for testing

— Penalizes overconfidence of models on uncertain items
— Easy generalization with log loss evaluation
— Not so clear with first-best accuracy or F-measure

e Demonstrated theoretical effectiveness (Smyth 1995)



Bayesian x Estimates

e Given estimated sensitivity, specificity and prevalence:

Calculate expected « for two annotators

Don’t even need to annotate common items

Calculate expected « for two new annotators
Calcluate confidence/posterior uncertainty of «

May formulate hypothesis tests

e.g. k for given standard above 0.8

e.g. « for coding standard 1 higher than for standard 2

e Always a good idea to measure posterior uncertainty

e May estimate Bayesian posteriors (or frequentist confi-
dence intervals) without annotation model



Hierarchical Bayesian
Annotation Model

(Carpenter 2008)



Generative Annotation Model Sketch
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Generative Model of Annotation Process

e Models all random variables given constant (hyper)priors
e Annotators don't all label all items

e Label z;, by annotator i for item jj,
m ~ Beta(1l,1) = Unif(]0,1])
¢; ~ Bernoulli(m)
0o,; ~ Beta(ao, o)
01,; ~ Beta(ai,p1)
xzp ~ Bernoulli(c;; 01,5, + (1 — ¢, )(1 = 6o,5,))
e Same annotation model as before for labels « given accuracies 6 and
category c

e Additionally model generation of prevalence =, categories ¢, and ac-
curacies 6



Hierarchical Generation of Hyperpriors

e Models annotator population: mean accuracies and variability
e Infers appropriate smoothing for low counts
e Prior mean accuracy: «o/(a+ )

e Prior mean scale (inverse variability): (a + 3)

ao/(ao +ﬁo) ~ Beta(l,l)
ao+ Bo ~ Pareto(1.5)
ar/(a1+B1) ~ Beta(l,1)
a1 +pB1 ~ Pareto(1.5)
e Beta(1, 1) uniform prior on mean accuracies o/ (a + 3) € [0, 1]

e Pareto(z|1.5) o< 225 a diffuse prior for scales o + 3 € [0, c0)



Sampling Notation Defines Joint Density

p(e, z, 00,01, m, ao, Bo, a1, B1)
= TT._, Bern(c;|n)
x [Ty Bemn(zpci, 01,5, + (1= ci, ) (1= 00,5,))
x [1;_, Beta(6o,;]a0, Bo)
X H;’Zl Beta(61,j]a1, B1)
x Beta(n|1,1)
x Beta(ao /(o + Bo)|1,1)
X Beta(a /(o1 + B81)(1,1)
x Pareto(ag + Bo|1.5)
x Pareto(a + B1]1.5)

e Marginals: p(z) = [ p(z,y) dy; Conditionals: p(y|z) = p(z,y)/p(z)



Gibbs Sampling



Gibbs Sampling

General purpose Markov Chain Monte Carlo (MCMC) method
— States of Markov chain are samples of all variables
e'g' (C<n> ’ x(n) ) 9(()n>7 egn)7 71_(71,) ’ Oé(()n)7 ﬁén) ’ O‘gn)7 ﬁ§n))

— It's a continuous Markov process, unlike n-gram LMs or HMMs

Typically randomly initialize with “reasonable” values

Next state samples each var given current value of other vars
e Reduces sampling of joint model to conditionals

— Requires sampler for each variable given all others

— We explicitly calculated p(c;|z, 7, 60, 01) as example



Gibbs Sampling (cont.)

e Works for any model where dependencies form directed acyclic graph
— Such models called “directed graphical models”
— Variables with no priors are hyperparameters
— All otehr variables inferred

BUGS automatically computes all conditional distributions

Convergences to stationary process sampling from posterior

— Typically sample from multiple chains to monitor convergence
— Typically throw away initial samples before convergence

e Robust compared to Expectation Maximization [EM]



Gibbs Sample Traceplots

e Plots multiple chains overlaid with different colors (3 chains here)

Gibbs Samples: pi
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e Want to see this kind of mixing of different chains
o Potential scale reduction statistic & characterizes mixing
e BUGS shows traceplots for all vars; Coda package in R calcs R



Gibbs Samples for Bayesian Estimation

e Bayesian parameter estimate for variable ¢ given N samples ¢(™)

Approximate by averaging over collection of Gibbs samples

¢ = E[¢]
[ ép(9) do
~ o x e o™

e Provides unbiased estimate (equal to expected parameter value)

e Works for any marginal or joint distribution of parameters



Gibbs Samples For Inference

e Samples ¢(™) support plug-in inference
— E.g. Predictive Posterior Inference
p(ily) = [ p(§16) p(8ly) dp ~ & Sh_; p(ls™)

— E.g. (Multiple) Variable Comparisons
Pr(60,; > b0,5) ~ & SN, 1(65") > egf‘j)/)

Pr(j best specificity) ~ + . 1‘[ L1, é"; > 60 J,)

e Latter statistic can be used to compare systems (the ‘E’ in “LREC”)
e More samples provide more accurate approximations
e Plug-in estimates like (frequentist) bootstrap estimates



Simulation Study



Simulated Data Tests Estimators

e Simulate data (with reasonable model settings)
e Test sampler’s ability to fit
e Simulation Parameter Values

— J = 20 annotators, I = 1000 items

— prevalence m = 0.2

— specificity prior («o, Bo0) = (40, 8) (83% accurate, medium var)
— sensitivity prior (a1, 81) = (20, 8) (72% accurate, high var)

— specificities 6; generated randomly given a1, 81

— sensitivities 6; generated randomly given a1, 51

— categories c generated randomly given 7

— annotations x generated randomly given 6y, 61, ¢

— 50% missing annotations removed randomly



Simulated Sensitivities / Specificities

e Crosshairs at prior mean
e Realistic simulation compared to (estimated) real data

Simulated theta.0 & theta.1

theta.1
0.8 0.9

0.7

0.6

0.5

theta.0



Prevalence Estimate

e Estimand of interest in sentiment (or epidemiology)

e Simulated with prevalence = = 0.2; sample prevalence 0.21

e Estimates match samples; more data produces tighter estimates
e Histogram of posterior Gibbs samples:

Posterior: pi

250
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Sensitivity / Specificity Estimates

mean estimate theta.0

e Posterior mean and 95% intervals

e Diagonal is perfect estimation

1.0

0.9

0.8

0.7

0.6

0.5

Estimated vs. Simulated theta.0

Estimated vs. Simulated theta.1

mean estimate theta.1
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e More uncertainty for sensitivity (more data w. = = 0.2)




Sens / Spec Hyperprior Estimates

e Posterior samples (a(™), 3(")) scatterplot
e Cross-hairs at simulated values; estimates at sample averages

Posterior: Sensitivity Mean & Scale Posterior: Specificity Mean & Scale

80

alpha.1 + beta.1
alpha.0 + beta.0

T T T T T T T T T T T
060 065 070 075 080 085 090 060 065 070 075 080 085 090

alpha.1/ (alpha.1 + beta.1) alpha.0 / (alpha.0 + beta.0)

e Observe typical skew to high scale (low variance)
e More variance on sensitivity (lower counts)



Another
Mechanical Turk Example

(Snow, O’Connor, Jurafsky and Ng 2008)



Case 3: RTE-1

e Examples and gold standard by (Dagan, Glickman and Magnini 2006)
e 800 ltems (400 true, 400 false in gold standard)
e Examples

— ID:56 Gold Label: TRUE

Text: Euro-Scandinavian media cheer Denmark v Sweden draw.
Hypothesis: Denmark and Sweden tie.

— ID:77 Gold Label: FALSE
Text: Clinton’s new book is not big seller here.
Hypotheis: Clinton’s book is a big seller.



RTE-1 Gold-Standard Procedure

e Each item labeled by two annotators
e Prevalence balanced at = = 0.5 by design
e Censoring Data
— Censored 20% of data with disagreements
— Censored another 13% authors found “questionable”

— Censoring overestimates certainty and accuracy of evaluated
systems on real data



RTE-1 Inter-Annotator Agreement

e Inter-annotator agreement was 80%

e Chance agreement = 0.5% + 0.52 = 0.5

o n= g =00

e Assuming 2 annotators at 80% accuracy,
expect 4% agreement on wrong label:
(1-0.8) x (1 —0.8) =0.04



Turker Annotations for RTE-1

e Collected by Dolores Labs

Analyzed by Snow et al. in EMNLP paper

e They also recreated 4 other NLP datasets:
— word sense (multinomial)

— sentiment (multi-faceted scalar 1-100)
— temporal ordering (binary)

word similarity (ordinal 1-10)

e 2 items/task, 10 Turkers per item, 164 Turkers total

All five tasks completed in a few days
o All five tasks cost under US$100



Turker Instructions for RTE-1

e Instructions

Please state whether the second sentence (the Hypothesis) is implied
by the information in first sentence (the Text), i.e., please state whether
the Hypothesis can be determined to be true given that the Text is true.
Assume that you do not know anything about the situation except what
the Text itself says.

Also, note that every part of the Hypothesis must be implied by the
Text in order for it to be true.

e Plus, 2 true and 2 false examples



(Munged) Turker Data for RTE-1

Item Coder Label | k i j ox
1 if1] j1  x[1] | 1 11 1
2 i[2] jl21  x[2] | 2 1 21
3 i3] j81  x[3] | 3 1 3 1
4 if4] jr4l  x[4] | 4 1 4 0
|
509 i[6091 j[509] =x[509] | 509 51 220
510 i[610] j[610] =x[510]1 | 510 51 101
511 i[6111 j[511]1 =x[511]1 | 511 52 41
512 i[512] j[512]1 =x[512] | 512 52 11
[
8000 i[8000] j[8000] x[8000]1 | 8000 800 144 1



Gold-Standard Estimation (Again)

e Snow et al. used published gold standard as gold standard
e Inferred categories agreed closely with gold standard
e Snow et al. showed 3-5 Turkers as good as experts in most tasks
e Ten Turkers better than pair of “experts”
— Turkers better matched coding standard on disagreements
— Lots of random (spam) annotations from Turkers
— Filtering out bad Turkers would have better ratio



BUGS Code

model {
pi ~ dbeta(l,1)
for (i in 1:I) {
c[i] ~ dbern(pi)
¥
for (j in 1:J) {
theta.0[j] ~ dbeta(alpha.0,beta.0) I(.4,.99)
theta.1[j] ~ dbeta(alpha.l,beta.1) I(.4,.99)
¥
for (k in 1:K) {
bern[k] <- c[ii[k]] * theta.1[jj[k]]
+ (1 - clii[k]]) * (1 - theta.0[jj[k]1)
xx[k] ~ dbern(bern[k])

acc.0 ~ dbeta(l,1)

scale.0 = dpar(1.5,1) I(1,100)
alpha.0 <- acc.0 * scale.0
beta.0 <- (1-acc.0) * scale.O
acc.1 ~ dbeta(1,1)

scale.1 ~ dpar(1.5,1) I(1,100)
alpha.l <- acc.l * scale.l;
beta.l <- (l-acc.1) * scale.l



Calling BUGS from R

library ("R2WinBUGS")

2]

data <- list("

I, L "xx","id

parameters <- c( "pi","theta.0","theta.1",
"alpha.0", "beta.0", "acc.0", "scale.0"

"alpha.1", "beta.l", "acc.1", "scale.1")

inits <- function() {
list(pi=runif(1,0.7,0.8),

c=rbinom(I,1,0.5),
acc.0 <- runif(1,0.9,0.9),
scale.0 <- runif(1,5,5),
acc.1 <- runif(1,0.9,0.9),
scale.l <- runif(1,5,5),
theta.0=runif(J,0.9,0.9),
theta.1l=runif(J,0.9,0.9)) 3}

anno <- bugs(data, inits, parameters,
"c:/carp/devguard/sandbox/hierAnno/trunk/R/bugs/beta-binomial-anno.bug",
n.chains=3, n.iter=500, n.thin=5,
bugs.directory="c:\\WinBUGS\\WinBUGS14")



Estimated vs. “Gold” Accuracies

specificity: theta_0
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e Diagonal green at chance (below is adversarial)
e Blue lines at estimated prior means

e Circle area is items annotated, center at “gold standard” accuracy,

lines to estimated accuracy (note pull to prior)




Annotator Pool Estimates

e Gold-standard balanced (50% prevalence)
e Posterior 95% intervals

Prevalence (.45,.52)

Specificity (.81,.87)

— Sensitivity (.82,.87)

— (Expect balanced sensitivity/specificity due to symmetry of task)

e Dealing with bad Turkers

— 39% of annotators no better than chance

more than 50% of annotations from spammers
— very little effect on category inference

has strong effect on mean and variability of annotators



Residual Cat Errors: ¢; — Pr(c; = 1]--+)
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8 g
2 8
28 28
£ £
& &
fo <5 o0 o5 1o o <5 0 o 1o
e unartor
Voling Residual Category Error Pruned Voling Residual Category Error

e Most residual errors in gold std (extremes of top graphs), not Turkers
e Pruning bad annotators improves voting more than model estimates



Modeling Item Difficulty



ltem Difficulty

e Clear that some items easy and some hard

e Assuming all same leads to suboptimal marginal fit

e Hard to estimate even with 10 annotators/item
— Posterior intervals too wide for good read on difficulty
— Fattens posteriors on annotator accuracies
— Better marginal fits (by x2)

e Problem is multiple explanations
— Good annotator accuracy, but hard items
— Mediocre annotator accuracy, medium difficulty items
— Poor annotator accuracy, but easy items



Mixture ltem Difficulty

e Assume some items easy in sense all annotators agree
e Simple mixture model over items
e Easy to estimate

e (Espeland and Handelman 1989; Beigman-Klebanov, Beigman, and
Diermeier 2008)



Modeling Scalar ltem Difficulty

e Assume item difficulties vary on continuous scale

e Logistic ltem-Response or Rasch models

e Used in social sciences to model educational testing and voting
e Use logistic scale (maps (—oo, 00) to [0, 1])

e «j: annotator j’s bias (ideally 0)

e J;: annotator j's discriminativeness (ideally co)

e [3;:item ¢’s “location” (true category and difficulty)

o z; ~ logit™ (8, (a; — B5))

e Many variants of this model in epidemiology and testing

e (Uebersax and Grove 1993; Qu, Tan and Kutner 1996; Carpenter
2008)



Hierarchical Item Difficulty Model

e Place normal (or other) priors on coefficients,
e.g. B; ~ Norm(0,02), o2 ~ Unif(0,100)
e Priors may be estimated as before; leads to pooling of item difficulties.
e Harder to estimate computationally in BUGS
e Same posterior inferences when converted back to linear scale
e e.g. average annotator accuracies, average item difficulties



Extensions



Extending Coding Types

e Multinomial responses (Dirichlet-multinomial)
e Ordinal responses (ordinal logistic model)
e Scalar responses (continuos responses)



Hierarchical and Multilvel Models

e Assume several coding tasks

— e.g. multiple part-of-speech corpora

— e.g. multiple named-entity corpora (see Finkel and Manning
2009)

— e.g. multiple language newswire categorization
— e.g. coref corpora in different genres or languages

Estimate another level of priors

— e.g. for prevalence
— e.g. for priors on accuracy priors

Common approach in social science models
e Even better pooled estimates if corpora are similar

Multilevel models allow cross-cutting “hierarchies”



Semi-Supervision

e Easy to add in supervised cases with Bayesian models

— Gibbs sampling skips sampling for supervised cases
e May go half way by mixing in “gold standard” annotators

— e.g. fixed values from gold standard, or

— e.g. fixed high, but non-100% accuracies, or

— e.g. stronger high accuracy prior
e With accurate supervision, improves estimates

— for prevalence
— for annotator accuracies
— for pool of annotators



Multimodal (Mixture) Priors

e Model Mechanical Turk as mixture of spammers and hammers
e This is what the Mechanical Turk data suggests
e May also model covariance of sensitivity/specificity

— Use multivariate normal or T distribution

— with covariance matrix

— Covariance may also be estimated hierarchically (see Lafferty
and Blei 2007)



Annotator and ltem Random Effects

e May add random effects for annotators

amount of annotator training

number of items annotated

annotator native language

annotator field of expertise

intern, random undergrad, grad student, task designer

e Also for Items

difficulty (already discussed)

type of item being annotated
frequency of item in a large corpus
capitalization in named entity detection

e Use logistic regression with these predictors to model accuracies



Jointly Estimate Model and Annotations

e Can train a model with inferred (probabilistic) gold standard
e May use trained model like another annotator
e May be beneficial to train multiple different annotators

e (Raykar, Yu, Zhao, Jerebko, Florin, Hermosillo-Valadez, Bogoni, and
Moy 2009)



Bayesian Estimation
and Inference



Bayesian Models

e Observed data: y; Model parameter(s): ¢
e Likelihood function (or sampling distribution): p(y|¢)
e Prior: p(¢)
e Chain rule: p(y, ¢) = p(yl¢) p(¢)
e Marginal (prior predictive distribution): = [ p(y|$) p(¢) do
e Posterior: p(¢|y) calculated via Bayessrule
p(dly) = p(y.¢)/p(y)
= p(yl9) ()/p(y)
= ple) p(#)/ [ p(ylé )p(¢’)de
p(yl®) ()



Point Estimators are “Best” Guesses

e Estimate parameters ¢ given observed data y
e Maximum Likelihood Estimator (ML)

¢*(y) = argmaxy p(y|¢)
maximizes probability of observed data given parameters
e Maximum a Posteriori (MAP) Estimate

¢(y) = arg max, p(gly) = arg max, p(y|$) p(4)
maximizes probability of parameters given observed data
o If prior is constant, [i.e. p(¢) = c], then ¢(y) = ¢* (y)
e Bayesian estimator (given mean square error loss)

o(y) = El¢] = [ ¢ p(¢ly) d¢
is expected parameter values given observed data

e Bayesian estimates are unbiased by construction
[i.e. expected estimate is parameter’s true value]



Inference

e Observed data y; New data ¢
e Posterior predictive distribution: p(g|y)
e Maximum likelihood approximation: p(gly) =~ p(g|¢*(y))
o MAP approximation: p(gly) =~ p(7|é(y))
e Bayesian point approximation: p(gly) = p(g|¢(y))
e Bayesian posterior predictive distribution
p(gly) = [ p(J]9) p(dly) do

averages over uncertainty in estimate of ¢ [i.e. p(¢|y)]



Bernoulli Distribution (Single Binary Trial)

e Outcome y € {0,1} [success=1, failure=0]
e Parameter 6 € [0, 1] is chance of success
0 ify=1

o p(y]0) = Bemoull(y|0) = 0¥ (1 —0)1=v = {1 0 ity=0

e For N independent trials y = y1,...,yn, Where y, € {0,1},

plo) = TIN_;p(yal6)
nyzl fyn (1 — )1=vn

04(1 —0)B
where A=Y y,andB=3"_ (1-y,)=N-A

o z°=1 and z%" =zt



Conjugate Priors

e Given a sampling distribution p(y|¢)
e Given a family of distributions F
e The family F is conjugate for p(y|¢) if
prior p(¢) € F implies posterior p(¢ly) € F
e Provides analytic form of posterior (vs. numerical approximation)
e Supports incremental updates
— Start with prior p(¢) € F
— After data y, have posterior p(¢|y) € F
Use p(¢|y) as prior for new data y’
— New posterior is p(¢|y, y’') € F
— i.e. updating with y then y’ same as upating for y, 3’ together

e Not necessary for Bayesian inference



Mean, Mode and Variance for Bernoulli

e Mean and Mode: E[Bern(6)] = mode[Bern(6)] = 6
Variance: var[Bern(8)] =6 (1 —6)
Standard Deviation: sd[Bern(0)] = /6 (1 —6)

e For discrete X with NV outcomes z1, ...,z distributed p x (z)
— Mode (Max Value): mode[X] = arg max_, p(z,)
— Mean (Average Value): E[X] = S0 p(zn) zn
— Variance: var[X] = E[X — E[X]] = 30, p(zn) (zn — E[X])?
— Standard Deviation: sd[X] = \/var[X]



Beta Distribution

e Outcome 6 € [0,1]
e Parameters o, 8 > 0 [av — 1 prior successes; 8 — 1 failures]
e Continuous Density Function

p(0le,B) = Beta(d|a, 5)

_— 1 _ pa—1(1_gp\B-1
= Bap 079

x 01 (1—9)F-1

e Continuous densities p(#) have p(9) > 0 and [ p(0)do = 1

e Beta function B(er, ) = [ 027! (1 —0)P~1 do = FF((@o;F(Bﬁ))

o I'(z) = [ 4" ' exp(—y)dy is continuous generalization of factorial

ie.’'(n+1)=nl=nx(n—1)x---x2x1 forintegern > 0



Beta Examples

Beta (0.5, 0.5)

Beta (1, 1)

Beta (0.2, 0.8)

Lo L

Beta (0.4, 1.6)

Beta (5, 5)

Beta (20, 20)

AN

Beta (2, 8)

1

Beta (8, 32)




Mean, Mode and Variance for Beta

e Mean: E[Beta(a, 8)] = ai/ﬂ’

af

e Variance: var[Beta(a, 8)] = CEYOLCET Y

a—1 !
—= = ifa>land g >1
e Mode: mode[Beta(a, 8)] = @+ 5 —2 p
undefined otherwise



Beta is Conjugate Prior for Bernoulli

e Data is N Bernoulli samples y = y1,...,yn fory, € {0,1}
e Prior p(0) = Beta(0|«, 8)
o Likelihood p(y|8) = TT2_, Bern(y,|8) = 64 (1 — 6)7
where A is number of successes, B humber of failures in y
e Posterior
p(0ly) p(y10) p(0)
= [IY_, Bern(yn|6) Beta(|o, 8)
x 04 (1—-0)Bor—1(1-09)»1
9A+a—1 (1 _ 9)B+[3—1
Beta(A + o, B+ )
e i.e. add data counts A and B to prior counts « — 1 and 8 — 1
e Concrete example of incremental updates — just addition

R



The End
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