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In Chapter 1, we considered how psychologists gather

data—how they design a study or an experiment, how they ensure external and

internal validity, and so on. But what do they do once the data are gathered? In this

appendix, we will focus on the statistical methods investigators use to organize and

interpret numerical data.

Let us begin with an example. Suppose some investigators want to find out

whether three-year-old boys are more physically aggressive than three-year-old girls.

To find out, the investigators will first have to come up with some appropriate meas-

ure of physical aggression. They will then have to select the participants for the study.

Since the investigators presumably want to say something about three-year-olds in

general, not just the particular three-year-olds in their study, they must select their

participants appropriately. Even more important, they must select boys and girls who

are well matched to each other in all regards except gender, so that the investigators

can be reasonably sure that any differences between the two groups are attributable to 
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the difference in sex rather than to other factors (such as intellectual development,
social class, and so on).

We discussed in Chapter 1 how investigators design studies and collect data. So
we’ll start here with what investigators do once their data have been collected. Their
first task is to organize these data in a meaningful way. Suppose the study used two
groups of 50 boys and 50 girls, each observed on 10 separate occasions. This means
that the investigators will end up with at least 1,000 separate numerical entries, 500
for the boys and 500 for the girls. Something has to be done to reduce this mass of
numbers into some manageable form. This is usually accomplished by some process of
averaging scores.

The next step involves statistical interpretation. Suppose the investigators find
that the average score for physical aggression is greater for the boys than for the girls.
(It probably will be.) How should this fact be interpreted? Should it be taken seri-
ously, or might it just be a fluke, some sort of accident? For it is just about certain that
the data contain variability: the children within each group will not perform identically
to each other; furthermore, the same child may very well behave differently on one
occasion than on another. Thus, the number of aggressive acts for the boys might be,
say, 5.8 on average, but might vary from a low of 1.3 (the score from completely calm
Calvin) to a high of 11.4 (the score from awfully aggressive Albert). The average num-
ber of aggressive acts for the girls might be 3.9 (and so lower than the boys’ average),
but this derives from a range of scores that include 0 (from serene Sarah) and 6.2
(from aggressive Agnes).

Is it possible that this difference between boys and girls is just a matter of chance,
an accidental by-product of this variability? For example, what if boys and girls are, in
fact, rather similar in their levels of aggression, but—just by chance—the study hap-
pened to include four or five extremely aggressive boys and a comparable number of
extremely unaggressive girls? After all, we know that our results would have been differ-
ent if Albert had been absent on the day of our testing; the boys’ average, without his
contribution, would have been lower. Likewise, Agnes’s twin sister was not included in
our test group because of the random process through which we selected our research
participants. If she had been included, and if she was as aggressive as her twin, then
the girls’ average would have been higher. Is it possible that accidents like these are the
real source of the apparent difference between the groups? If so, then another study,
without these same accidents, might yield a different result. One of the main reasons
for using statistical methods is to deal with questions of this sort, to help us draw use-
ful conclusions about behavior despite the unavoidable variability, and, specifically,
allowing us to ask in a systematic way whether our data pattern is reliable (and so
would emerge in subsequent studies) or just the product of accidents.

DESCRIBING THE DATA

In the example above, we assumed that the investigators would be collecting numerical
data. We made this assumption because much of the power of statistics results from the
fact that numbers can be manipulated using the rules of arithmetic, unlike open-ended
responses in an interview, videotapes of social interactions, or lists of words recalled in
a memory experiment. (How could you average together one participant’s response of
“Yes, I like them” with another’s response of “Only on weekends”?) As a result, scien-
tists prefer to use numerical response measures whenever possible. Consider our hypo-
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thetical study of physical aggression. The investigators who watched the research par-
ticipants might rate their physical aggression in various situations from 1 to 5, with 1
being “extremely docile” and 5 being “extremely aggressive,” or they might count the
number of aggressive acts (say, hitting or kicking another child). This operation of
assigning numbers to observed events is called scaling.

There are several types of scales that will concern us. They differ by the arithmetical
operations that can be performed on them.

Categorical and Ordinal Scales
Sometimes the scores assigned to individuals are merely categorical (also called nominal).
For example, when respondents to a poll are asked to name the television channel they
watch most frequently, they might respond “4,” “2,” or “13.” These numbers serve only to
group the responses into categories. They can obviously not be subjected to any arith-
metic operations. (If a respondent watches channels 2 and 4 equally often, we can’t sum-
marize this by claiming that, on average, she watches channel 3!)

Ordinal scales convey more information, in that the relative magnitude of each num-
ber is meaningful—not arbitrary, as in the case of categorical scales. If individuals are
asked to list the ten people they most admire, the number 1 can be assigned to the most
admired person, 2 to the runner-up, and so on. The smaller the number assigned, the
more the person is admired. Notice that no such statement can be made of television
channels: channel 4 is not more anything than channel 2, just different from it.

Scores that are ordinally scaled cannot, however, be added or subtracted. The first
two persons on the most-admired list differ in admirability by 1; so do the last two. Yet
the individual who has done the ranking may admire the first person far more than the
other nine, all of whom might be very similar in admirability. Imagine, for example, a
child who, given this task, lists his mother first, followed by the starting lineup of the
Chicago Cubs. In this case, the difference between rank 1 and rank 2 is enormous; the
difference between rank 2 and rank 3 (or any other pair of adjacent ranks) is apprecia-
bly smaller. Or, to put it another way, the difference of eight between person 2 and
person 10 probably represents a smaller difference in judged admirability than the dif-
ference of one obtained between persons 1 and 2 (at least so the mother hopes).

Interval Scales
Scales in which equal differences between scores, or intervals, can be treated as equal
units are called interval scales. Response time is a common psychological variable that is
usually treated as an interval scale. In some memory experiments, for example, the par-
ticipant must respond as quickly as possible to each of several words, some of which she
has seen earlier in the experiment; the task is to indicate, by pressing the appropriate
button, whether each word had appeared earlier or not.

Suppose that someone requires an average of 2 seconds to respond to nouns, 3 seconds
to verbs, and 4 seconds to adjectives. The difference in decision time between verbs and
nouns (3 − 2 = 1 second) is the same as the difference in decision time between adjectives
and verbs (4 − 3 = 1 second). We can make this statement—which in turn suggests vari-
ous hypotheses about the factors that underlie such differences—precisely because
response time can be regarded as an interval scale.

Ratio Scales
Scores based on an interval scale allow subtraction and addition. But they do not allow
multiplication and division. Consider the Celsius scale of temperature. The difference
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between 10 and 20 degrees Celsius is equal to that between 30 and 40 degrees Celsius.
But can one say that 20 degrees Celsius is twice as high a temperature as 10 degrees
Celsius? The answer is no, for the Celsius scale of temperature is only an interval scale.
It is not a ratio scale, which allows statements such as 10 feet is one-fifth as long as 
50 feet, or 15 pounds is three times as heavy as 5 pounds. To make such statements, one
needs a true zero point. Such a ratio scale with a zero point does exist for temperature—
the Kelvin absolute temperature scale, whose zero point (absolute zero to chemists and
physicists) is about −273 degrees Celsius.

Some psychological variables can be described by a ratio scale. For example, it does make
sense to say that the rock music emanating from your neighbor’s dorm room is four times
as loud as your roommate singing in the shower. But there are many psychological variables
that cannot be described in ratio terms. For example, let us say that we assemble a list of
behaviors commonly associated with clinical depression, and we find that, say, Person 1 dis-
plays 8 of these behaviors,while Person 2 displays 16 of them.We could legitimately say that
there is a difference of 8 behaviors here—this is an interval scale.But we should not say that
Person 2’s score is twice as worrisome as that of Person 1, because we really don’t know the
zero point for this scale. More specifically, what we need to know is how many of these
behaviors can be observed in people who do not suffer from depression. If we knew that
people without depression showed none of these behaviors, then zero would be the true
starting point for our scale (and so, in this scenario, it would appear that Person 2 does have
twice as many of the relevant behaviors as Person 1). But if we found that people without
depression showed 7 of these behaviors, then that would be the starting point for our scale
(and so Person 1, with only 1 behavior more than this starting point, would appear to be
vastly better off than Person 2, with 9 behaviors beyond the starting point).

ORGANIZING THE DATA

We have considered the ways in which psychologists describe the data provided by their
studies by assigning numbers to them (scaling). Our next task is to see how these data
are organized.

The Frequency Distribution
Suppose that an investigator wanted to determine whether visual imagery aids memory.
(See Chapter 7 for some actual research on this topic.) To find out he designed an exper-
iment that required participants to memorize a list of words and later to recall as many
of these words as possible. Members of the experimental group were instructed to form
visual images connecting each word to the preceding word. Members of the control
group were not given any imagery instructions. Let us say that there are ten people in
each group, and so the scores from the control group might have been

8, 11, 6, 7, 5, 9, 5, 9, 9, 11.

A first step in organizing these data is to list all the possible scores and the frequencies
with which they occurred, as shown in Table A.1. Such an arrangement is called a fre-
quency distribution because it shows the frequency with which each number of words
was recalled (e.g., how many of the participants recalled 11 words, how many recalled 10
words, and so on).

The frequency distribution can also be expressed graphically. A common means for
doing this is a histogram, which uses a series of rectangles to depict the frequency dis-
tribution (Figure A.1). The values of the dependent variable (the number of words

11 2
10 0

9 3
8 1
7 1
6 1
5 2

Frequency Distribution
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recalled) are shown by the location of each rectangle on the x-axis. The frequency of
each score is shown by the height of each rectangle, as measured on the 
y-axis. This is simple enough for our example, but in practice graphic presentation often
requires a further step. The number of possible values the dependent variable can
assume is often very large. As a result, it is possible that every specific score in the data
list appears just once! For example, in a response-time study, there might be only one
response in the entire data set that took exactly 224.01 milliseconds, just one that took
exactly 224.02 milliseconds, and so on. If the investigator created a frequency distribu-
tion showing how often each score occurred, the resulting histogram would be very
wide (with many rectangles), very flat (since all rectangles would have the same height),
and not at all informative. To get around this, it is common for investigators to group
together similar observations, and this is usually done by dividing the data into “bins.”
Thus, the histogram might plot the frequency of observing a response time between,
say, 200 and 225 milliseconds (that would be one bin), the frequency of observing a
time between 225.01 and 250 milliseconds, and so on.

Measures of Central Tendency
For many purposes we want a description of an experiment’s result that is more concise
than a frequency distribution. We might, for example, wish to describe how a typical or
average participant behaved. This sort of data summary is provided by a measure of
central tendency, which locates the center of the distribution. Three measures of central
tendency are commonly used: the mode, the median, and the mean.

The mode is simply the score that occurs most frequently. In our example, the mode
for the control group is 9. More people (to be exact, 3) recalled 9 words than recalled
any other number of words.

The median is the point that divides the distribution into two equal halves, when the
scores are arranged in increasing order. To find the median in our example, we first list
the scores:

5, 5, 6, 7, 8, 9, 9, 9, 11, 11
c

Since there are ten scores, the median lies between the fifth and sixth scores, that is,
between 8 and 9, as indicated by the arrow. Any score between 8 and 9 would divide the
distribution into two equal halves, but it is conventional to choose the number in the
center of the interval between them, that is, 8.5. When there is an odd number of scores
this problem does not arise, and the middle number is used.

The third measure of central tendency, the mean (M), is the familiar arithmetic
average. If N stands for the number of scores, then

M =

= = = 8.0

The mean is the measure of central tendency most commonly used by psychologists,
in part because a number of further calculations can be based on this measure. It is
common, therefore, for the results of experiments like our imagery example to be dis-
played as shown in Figure A.2. The values of the independent variable (in this case,
getting imagery instructions) are indicated on the x-axis, and the values of the depend-
ent variable (mean number of words recalled) on the y-axis.

80
10

5 + 5 + 6 + 7 + 8 + 9 + 9 + 9 + 11 + 11 
10

sum of scores
N

A.1 Histogram In a histogram, a fre-
quency distribution is graphically repre-
sented by a series of rectangles. The
location of each rectangle on the x-axis
indicates a score, while its height shows
how often that score occurred.
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A.2 The results of an experiment on
memorizing Participants in the imagery
group, who were asked to form visual
images of the words they were to memo-
rize, recalled an average of 11 words.
Participants in the control group, who
received no special instructions, recalled an
average of 8 words.
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Despite the common use of the mean, each of these measures of central tendency
has its own advantages. The mode is used relatively rarely, because the modes of two
samples can differ greatly even if the samples have very similar distributions. If one of
the 3 participants who recalled 9 words recalled only 5 instead, the mode would have
been 5 rather than 9. But the mode does have its uses. For example, a home builder
might decide to include a two-car garage on a new house because 2 is the mode for the
number of cars owned by American families; more people will be content with a two-car
garage than with any other size.

The median and the mean differ most in the degree to which they are affected by
extreme scores. If the highest score in our sample were changed from 11 to 111, the
median would be unaffected, whereas the mean would jump from 8.0 to 18.0. Most
people would find the median (which remains 8.5) a more compelling “average” than
the mean in such a situation, since most of the scores in the distribution are close to
the median but are not close to the mean (18.0). This is why medians are often pre-
ferred when the data become highly variable, even though the mean has computational
advantages.

The advantages of the median become particularly clear with distributions of scores
that contain a few extreme values. Such distributions are said to be skewed, and a clas-
sic example is income distribution, since there are only a few very high incomes but
many low ones. Suppose we sample ten individuals from a neighborhood and find their
yearly incomes (in thousands of dollars) to be

10, 12, 20, 20, 40, 40, 40, 80, 80, 4,000

The median income for this sample is 40 ($40,000), since both the fifth and sixth
scores are 40. This value reflects the income of the typical individual. The mean income
for this sample, however, is (10 + 12 + 20 + 20 + 40 + 40 + 40 + 80 + 80 + 4,000)/
10 = 418, or $418,000. A politician who wants to demonstrate that her neighborhood
has prospered might—quite accurately—use these data to claim that the average
(mean) income is $418,000. If, on the other hand, she wished to plead for financial
relief, she might say—with equal accuracy—that the average (median) income is only
$40,000. There is no single “correct” way to find an “average” in this situation, but it
is obviously important to know which average (that is, which measure of central ten-
dency) is being used.

When deviations in either direction from the mean are equally frequent, the distribu-
tion is said to be symmetrical. In such distributions, the mean and the median are likely to
be close to each other in actual value, and so either can be used in describing the data.
Many psychological variables have symmetrical distributions, but for variables with
skewed distributions, like income, measures of central tendency must be chosen with care.

Measures of Variability
In reducing an entire frequency distribution to an average score, we have discarded a lot
of very useful information. Suppose the National Weather Service measures the tem-
perature every day for a year in various cities and calculates a mean for each city. This
tells us something about the city’s climate, but certainly does not tell us everything. This
is shown by the fact that the mean temperature in both San Francisco and Albuquerque
is 56 degrees Fahrenheit. But the climates of the two cities differ considerably, as indi-
cated in Table A.2.

The weather displays much more variability in the course of a year in Albuquerque
than in San Francisco, but, of course, this variability is not reflected in the mean. One
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way to measure this variability is the range, the highest score minus the lowest. The
range of temperatures in San Francisco is 15, while in Albuquerque it is 42.

A shortcoming of the range as a measure of variability is that it reflects the values of
only two scores in the entire sample. As an example, consider the following distribu-
tions of ages in two college classes:

Distribution A: 19, 19, 19, 19, 19, 20, 25

Distribution B: 17, 17, 17, 20, 23, 23, 23

Intuitively, distribution A has less variability, since all scores but one are very close to the
mean. Yet the range of scores is the same (6) in both distributions. The problem arises
because the range is determined by only two of the seven scores in each distribution.

A better measure of variability would incorporate every score in the distribution rather
than just two. One might think that the variability could be measured by asking how far
each individual score is away from the mean, and then taking the average of these dis-
tances. This would give us a measure that we could interpret (roughly) as ìon average, all
the data points are only two units from the mean (or “. . . three units . . .” or whatever it
turned out to be). The most straightforward way to measure this would be to find the
arithmetic difference (by subtraction) between each score and the mean (that is, comput-
ing [score − M] for each score), and then to take the average of these differences (that is,
add up all of these differences, and divide by the number of observations):

This hypothetical measure is unworkable, however, because some of the scores are
greater than the mean and some are smaller, so that the numerator is a sum of both pos-
itive and negative terms. (In fact, it turns out that the sum of the positive terms equals
the sum of the negative terms, so that the expression shown above always equals zero.)
The solution to this problem is simply to square all the terms in the numerator, thus
making them all positive.* The resulting measure of variability is called the variance (V):

V = (1)
sum of (score − M)2

N

sum of (score − M)
N

Albuquerque, 35 56 77 42
New Mexico

San Francisco, 48 56 63 15
California

Temperature Data for Two Cities (Degrees Fahrenheit)
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B

LE

A.2 CITY LOWEST MONTH MEAN HIGHEST MONTH RANGE

* An alternative solution would be to sum the absolute value of these differences, that is, to consider only the magni-
tude of this difference for each score, not the sign. The resulting statistic, called the average deviation, is little used,
however, primarily because absolute values are not easily dealt with in certain mathematical terms that underlie sta-
tistical theory. As a result, statisticians prefer to transform negative into positive numbers by squaring them.
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The calculation of the variance for the control group in the word-imagery experiment is
shown in Table A.3. As the table shows, the variance is obtained by subtracting the
mean (M, which equals 8) from each score, squaring each result, adding all the squared
terms, and dividing the resulting sum by the total number of scores (N, which equals
10), yielding a value of 4.4.

Because deviations from the mean are squared, the variance is expressed in units dif-
ferent from the scores themselves. If our dependent variable were a distance, measured
in centimeters, the variance would be expressed in square centimeters. As we will see in
the next section, it is convenient to have a measure of variability that can be added to
or subtracted from the mean; such a measure ought to be expressed in the same units
as the original scores. To accomplish this end, we employ another measure of variabil-
ity, the standard deviation, or SD. The standard deviation is derived from the variance by
taking the square root of the variance. Thus

SD = �V
–

In our example, the standard deviation is about 2.1, the square root of the variance
which is 4.4.

Converting Scores to Compare Them
Suppose a person takes two tests. One measures his memory span—how many digits
he can remember after one presentation. The other test measures his reading 
speed—how quickly he can read a 200-word essay. It turns out that he can remember
8 digits and needs 140 seconds for the essay. Is there any way to compare these two
numbers, to decide whether he can remember digits as well (or worse or equally well )
as he can read? On the face of it, the question seems absurd; it seems like comparing
apples and oranges. But for some purposes, we would want to compare these numbers.
For example, a first step toward identifying people with dyslexia is documenting that
their reading ability is markedly lower than we would expect, based on their intellectual
performance in other areas. For this purpose, a comparison much like the one just

8 8 – 8 = 0 02 = 0
11 11 – 8 = 3 32 = 9
6 6 – 8 = −2 (−2)2 = 4
7 7 – 8 = −1 (−1)2 = 1
5 5 – 8 = −3 (−3)2 = 9
9 9 – 8 = 1 12 = 1
5 5 – 8 = −3 (−3)2 = 9
9 9 – 8 = 1 12 = 1
9 9 – 8 = 1 12 = 1
11 11 – 8 = 3 32 = 9

sum = 44

V = = = 4.444
10

sum of (score – mean)2

N

Calculating Variance

TA
B

LE

A.3 SCORE SCORE − MEAN (SCORE − MEAN)2
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sketched might be useful. But how do we compare digits-remembered to number-of-
seconds-needed-for-reading?

In fact, there is a way to make this comparison, starting with an assessment of how
each of these two scores compares to the scores of other persons who have been given
the same two tests.

P E RC E N T I L E  R A N KS

One way of doing this is by transforming each of the two scores into a percentile rank. The
percentile rank of a score indicates the percentage of all scores that lie below that given
score. Let us assume that 8 digits is the 78th percentile. This means that 78 percent of
the relevant comparison group remembers fewer digits. Let us further assume that a
score of 140 seconds in the reading task is the 53rd percentile of the same comparison
group. We can now answer the question with which we started. This person can remem-
ber digits more effectively than he can read. By converting into percentile ranks we have
rendered incompatible scores compatible, allowing us to compare the two.

STA N DA R D  SCO R E S

For many statistical purposes there is an even better method of comparing scores or of
interpreting the meaning of individual scores. This is to express them by reference to
the mean and standard deviation of the frequency distribution of which they are a part.
This is done by converting the individual scores into standard scores (often called 
z-scores). The formula for calculating a z-score is:

z = (2)

Suppose you take a test that measures aptitude for accounting and are told your
score is 36. In itself, this number cannot help you decide whether to pursue or avoid a
career in accounting. To interpret your score you need to know both the average score
and how variable the scores are. If the mean is 30, you know you are above average, but
how far above average is 6 points? This might be an extreme score or one attained by
many, depending on the variability of the distribution.

Let us suppose that the standard deviation of the distribution is 3. Your z-score on
the accounting test is (36 − 30)/3 = +2. That is, your score is 2 SDs above the mean.

But how to use this information? Let us say that you are still unsure whether to
become an accountant, and so you take a screen test to help you decide whether to
become an actor instead. Here, your score is 100. This is a larger number than the
36 you scored on the earlier test, but it may not reveal much acting aptitude.
Suppose the mean score on the screen test is 80, and the standard deviation is 20;
then your z-score is (100 − 80)/20 = +1. In acting aptitude, you are 1 SD above the
mean (that is, z = +1)—above average but not by much. In accounting aptitude, you
are 2 SDs above the mean (that is, z = +2), and so the use of z-scores makes your
relative abilities clear.

Percentile rank and a z-score give similar information, but, to convert one into the
other, we need a bit more information.

The Normal Distribution
Frequency histograms can have a wide variety of shapes, but many variables that inter-
est psychologists have a normal distribution (often called a normal curve), which is a

(score − M)
SD
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symmetrical distribution of the shape shown in Figure A.3. (For more on normal curves,
see Chapter 14.) The graph is smooth, unlike the histogram in Figure A.1, because it
describes the distribution of scores from a very large sample. The normal curve is bell
shaped, with most of its scores near the mean; the farther a score is from the mean, the
less likely it is to occur. Among the many variables whose distributions are approxi-
mately normal are IQ, scholastic aptitude test (SAT) scores, and women’s heights (see
Table A.4).*

These three variables—IQ, SAT score, and height—obviously cannot literally have
the same distribution, since their means and standard deviations are different (Table
A.4 gives plausible values for them). In what sense, then, can they all be said to be nor-
mally distributed? The answer is that the shape of the distributions for all these vari-
ables is the same. For example, an IQ of 115 is 15 points, or 1 SD, above the IQ mean of
100; a height of 165 centimeters is 5 centimeters, or 1 SD, above the height mean of 160
centimeters. Both scores, therefore, have z-scores of 1. And crucially, the percentage of
heights between 160 and 165 centimeters is the same as the percentage of IQ scores
between 100 and 115, that is, 34 percent. This is true not just for these two variables, but
in general: it is the percentage of scores that lie between the mean and 1 SD above the
mean for any normally distributed variable.

T H E  P E RC E N T I L E  R A N K  O F  A  Z- SCO R E

In fact, this point can be put more generally: each normal curve has its own mean and
its own standard deviation. But all normal curves have the same shape, and, as a result,
the percentage of scores that fall between the mean and +1 standard deviation (and so
have z-scores between 0 and 1.0) is always the same: 34 percent. Likewise, for all normal
curves, the percentage of the scores that fall between +1 standard deviation and +2
standard deviations (and so have z-scores between 1.0 and 2.0) is always the same: 14
percent. And, since normal curves are symmetrical, the same proportions hold for below
the mean (and so 34 percent of the scores have z-scores between 0 and −1, and so on).
These relationships are illustrated in Figure A.3.

These facts allow us to convert any z-score directly into a percentile rank. A z-score of
1 has a percentile rank of 84. That is, 84 percent of all the scores are below this particu-
lar score. (This is true because 34 percent of the scores lie between the mean and 

IQ 100 15 70 85 100 115 130
SAT 500 100 300 400 500 600 700
Height 160 cm 5 cm 150 155 160 165 170

(women)

Normally Distributed Variables
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A.4

VALUES CORRESPOINDING

TO SPECIFIC Z-SCORES

VARIABLE MEAN STANDARD –2 –1 0 1 2
DEVIATION

* Men’s heights are also normally distributed, but the distribution of the heights of all adults is not. Such a distribu-
tion would have two peaks, one for the modal height of each sex, and would thus be shaped quite differently from
the normal curve. Distributions with two modes are called bimodal.

A.3 Normal distribution Values taken
from any normally distributed variable
(such as those presented in Table A.4) can
be converted to z-scores by the formula 
z = (score – M)/(SD). The figure shows
graphically the proportions that fall
between various values of z.

34% 34%
14% 14%

2%2%

0 1 2–2 –1
z-scores
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z = 1, and 50 percent of the scores lie blow the mean). Likewise, a z-score of −1 (1 SD
below the mean) corresponds, in a normal distribution, to a percentile rank of 16: only
16 percent of the scores are lower. And so on.

H O W  T H E  N O R M A L  CU R V E  A R I S E S

Why should variables such as height or IQ (and many others) form distributions that have
this particular shape? Mathematicians have shown that whenever a given variable is the
sum of many smaller variables, its distribution will be close to that of the normal curve.
One example is lifetime earnings—obviously the sum of what one has earned on many
prior occasions. A different example is height. Height can be thought of as the sum of the
contributions of the many genes and the many environmental factors that influence this
trait; it, therefore, satisfies the general condition. The basic idea is that the many different
factors that influence a given measure (such as the genes for height) operate independ-
ently of the others, and, for each of these factors, it is a matter of chance whether the fac-
tor applies to a particular individual or not. Thus, if someone’s father had a certain
height-promoting gene on one chromosome but not on the other chromosome in the pair,
then it would literally be a matter of chance whether the person inherited this gene or not
(and likewise for each of the other genes—and surely there are many—that determine
height). The person’s height would also depend on accidents in his experience—for exam-
ple, whether, just by bad luck, he happened to catch the flu at an age that interrupted what
would have otherwise been a strong growth spurt.

In essence, then, we can think of each person’s height as dependent on a succession
of coin tosses, with each toss describing whether that person received the height-
promoting factor or not—inherited the gene or not, got the flu at just the wrong time
or not, and so on. Of course, each factor contributes its own increment to the person’s
height, and so his ultimate height depends on how many of these factors fell the right
way. Thus, if we want to predict the person’s height, we need to explore the (relatively
simple) mathematics that describe how these chance events unfold.

Let us imagine that someone literally does toss a coin over and over, with each head
corresponding to a factor that tends to increase height and each tail to a factor that tends
to diminish it. Predicting the person’s height, therefore, would be equivalent to predict-
ing how many heads, in total, the person will obtain after a certain number of tosses. If
the coin is tossed only once, then there will be either 0 heads or 1 head, and these are
equally likely. The resulting distribution is shown in the top panel of Figure A.4.

If the number of tosses (which we will call N) is 2, then 0, 1, or 2 heads can arise.
However, not all these outcomes are equally likely: 0 heads come up only if the sequence
tail-tail (TT) occurs; 2 heads only if head-head (HH) occurs; but 1 head results from
either HT or TH. The distribution of heads for N = 2 is shown in the second panel of
Figure A.4. The area above 1 head has been subdivided into two equal parts, one for each
possible sequence containing a single head.*

As N increases, the distribution of the number of heads looks more and more like the
normal distribution,as the subsequent panels of Figure A.4 show.When N becomes as large
as the number of factors that determine height, the distribution of the number of heads is
virtually identical to the normal distribution, and this gives us just the claim we were after:
as we have described, this logic of coin tossing corresponds reasonably well to the logic of
the factors governing height, and so, just as the distribution of coin tosses will (with
enough tosses) be normally distributed,so will height.The same logic applies to many other

A.4 Histograms showing expected num-
ber of heads in tossing a fair coin N times
In successive panels, N = 1, 2, 4, and 8. The
bottom panel illustrates the case when 
N = 100 and shows a smoothed curve.
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* The distribution of the number of heads is called the binomial distribution, because of its relation to the binomial
theorem: the number of head-tail sequences that can lead to k heads is the (k + 1)st coefficient of (a + b)N.
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measures of interest to psychologists—the distribution of people’s intelligence or person-
ality traits, the distribution of response times in an experimental procedure, the distribu-
tion of students’ scores on a mid-term exam. These, too, are influenced by a succession of
chance factors, and so, just like the coin tosses, they will be normally distributed.

DESCRIBING THE RELATION BETWEEN
TWO VARIABLES: CORRELATION

So far, we have focused on how psychologists measure a single variable—what scales
they use, how they measure the variable’s average or its variability. In general, though,
investigators want to do more than this—they want to ask how two (or more) variables
are related to each other. Is there a relationship between the sex of a child (the inde-
pendent variable) and how physically aggressive (the dependent variable) that child is?
Is there a relationship between using visual imagery (the independent variable) and
memory (the dependent variable)? One way to measure this relationship is by examin-
ing the correlation between the two variables.*

Positive and Negative Correlation
Imagine that a manager of a taxicab company wants to identify drivers who will earn
relatively large amounts of money (for themselves and, of course, for the company). The
manager makes the plausible guess that one relevant factor is the driver’s knowledge of
the local geography, so she devises an appropriate test of street names, routes from
place to place, and so on, and administers the test to each driver. The question is
whether this test score is related to the driver’s job performance as measured by his
weekly earnings. To decide, the manager has to find out whether there is a correlation
between the test score and the earnings—that is, whether they tend to vary together.

In the taxicab example, the two variables will probably be positively correlatedóas the
independent variable (test score) increases, the dependent variable (earnings) will gen-
erally increase too. But other variables may be negatively correlatedówhen one
increases, the other will tend to decrease. An example is a phenomenon called Zipfís
law, which states that words that occur frequently in a language tend to be relatively
short. The two variablesóword length and word frequencyóare negatively correlated,
since one variable tends to increase as the other decreases.

Correlational data are often displayed in a scatter plot (or scatter diagram) in which
values of one variable are shown on the x-axis and variables of the other on the y-axis.
Figure A.5A is a scatter plot of word frequency versus word length for the words in this
sentence.** Each word is represented by a single point. An example is provided by the
word plot, which is four letters long and occurs with a frequency of 37 times per million

* In Chapter 1, we contrasted experimental and correlational designs; correlational designs are those which exploit dif-
ferences that exist independently of the investigator’s manipulations. Thus a comparison between boys and girls is a
correlational design (because the sex difference certainly exists independently of the investigator’s procedures), and so
is a comparison between, say, young children and old children. All of this is different from the statistical technique that
computes correlations. The statistic is just a specific means of exploring the relationship between two variables.
Correlational designs often use correlational statistics, but often do not.

** There is no point for the “word” A.5A in this sentence. The frequencies of the other words are taken from H.
Kucera and W. N. Francis, Computational Analysis of Present-Day American English (Providence, R. I.: Brown University
Press, 1967).
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words of English text (and is represented by the circled dot). The points on the graph
display a tendency to decrease on one variable as they increase on the other, although
the relation is by no means perfect.

It is helpful to draw a line through the various points in a scatter plot that comes as
close as possible to all of them (Figure A.5B). The line is called a line of best fit, and it
indicates the general trend of the data. Here, the line slopes downward because the cor-
relation between the variables is negative.

The three panels of Figure A.6 are scatter plots showing the relations between other
pairs of variables. In Figure A.6A hypothetical data from the taxicab example show that
there is a positive correlation between test score and earnings (since the line of best fit
slopes upward). Test score is not a perfect predictor of on-the-job performance, how-
ever, since the points are fairly widely scattered around the line. Points above the line
represent individuals who earn more than their test score would lead one to predict;
points below the line represent individuals who earn less.

The examples in Figures A.5 and A.6A illustrate moderate correlations; in con-
trast, panels B and C of Figure A.6 illustrate extreme cases. Figure A.6B shows data

A.5 Scatter plot of a negative correlation between word length and word frequency.
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A.6 Scatter plots of various correlations (A) The scatter plot and line of best fit show a posi-
tive correlation between a taxi-driving test and earnings. (B) A perfect positive correlation. The
line of best fit passes through all the points. (C) A correlation of zero. The line of best fit is
horizontal.
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from a hypothetical experiment conducted in a fourth-grade class to illustrate the
relation between metric and English units of length. The heights of five children are
measured twice, once in inches and once in centimeters; each point on the scatter
plot gives the two height measurements for one child. All the points in the figure
fall on the line of best fit, because height in centimeters always equals 2.54 times
height in inches. The two variables, height in centimeters and height in inches, are
perfectly correlatedóone can be perfectly predicted from the other. Thus, once you
know your height in inches, there is no information to be gained by measuring
yourself in centimeters.

Figure A.6C presents a relation between IQ and shoe size. These variables are
unrelated to each other; people with big feet have neither a higher nor a lower IQ than
people with small feet. The line of best fit is therefore horizontal: The best guess of an
individualís IQ is the same no matter what his or her shoe sizeóit is the mean IQ of the
population.

The Correlation Coefficient
Correlations are usually described by a correlation coefficient, denoted r, a number that
expresses the strength and the direction of the correlation. For positive correlations, r
is positive; for negative correlations, it is negative; for variables that are completely
uncorrelated, r equals 0. The largest positive value r can have is +1.00, which represents
a perfect correlation (as in Figure A.6B); the largest possible negative value is −1.00,
which is also a perfect correlation. The closer the points in a scatter plot come to falling
on the line of best fit, the nearer r will be to +1.00 or −1.00 and the more confident we
can be in predicting scores on one variable from scores on the other. The values of r for
the scatter plots in Figures A.5 and A.6A are given on the figures.

The method for calculating r between two variables, X and Y, is shown in Table A.5
(on the next page). The formula is:

r = (3)

The variable zx is the z-score corresponding to X; zy is the z-score correspond-
ing to Y. To find r, each X and Y score must first be converted to a z-score by subtracting
the mean for that variable and then dividing by the standard deviation for the variable.
Then the product of zx and zy is found for each pair of scores. The average of these prod-
ucts (the sum of the products divided by N, the number of pairs of scores) is r.

Interpreting and Misinterpreting Correlations
It is tempting to assume that if two variables are correlated, then one is the cause of
the other. This certainly seems plausible in our taxicab example, in which greater
knowledge of local geography would improve the driver’s performance, which in turn
would lead to greater earnings. Cause-and-effect relationships are also reflected in
other real-life correlations. There is, for example, a correlation between how much
loud music you listen to as an adolescent and the sensitivity of your hearing in later
life. (The correlation is negative—more loud music is associated with less sensitive
hearing.) And, in fact, there is a causal connection here, because listening to loud
music can damage your hearing. Similarly, there is a correlation between the vividness
of your visual imagery while awake and how often you remember your dreams on

sum (zxzy)

N
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1. Data (from Figure A.6A).

Test score (X) Earnings ( Y)

45 6
25 2
15 3
40 5
25 6
30 8

2. Find the mean and standard deviation for X and Y.

For X, mean = 30, standard deviation = 10
For Y, mean = 5, standard deviation = 2

3. Convert each X and each Y to a z-score, using z =

X Y z-score for X (zx) z-score for Y (zy) zxzy

45 6 1.5 0.5 0.75
25 2 �0.5 −1.5 0.75
15 3 �1.5 −1.0 1.50
40 5 1.0 0.0 0.00
25 6 �0.5 0.5 �0.25
30 8 0.0 1.5 0.00

2.75

4. Find the product zxzy for each pair of scores.

5. r = = = .46
2.75

6

sum (zxzy)

N

(score − M)
SD

Calculation of the Correlation Coefficient

TA
B

LE

A.5

awakening (Cory, Ormiston, Simmel, & Dainoff, 1975). This correlation is positive—
greater vividness is associated with more frequent dream recall. And here, too, there
may be a causal connection: vivid waking imagery creates a mental perspective similar
to the nighttime experience of dreaming, and this similarity of perspective facilitates
recall.

However, as we emphasized in Chapter 1 and again in many other contexts in this
book, often a correlation does not indicate a cause-and-effect relationship, or, if it does,
the direction of causation is ambiguous. For example, consider the negative correlation
between obesity and life expectancy: people who are overweight tend to die younger
than people who are not overweight. For many years, this was interpreted as a cause-
and-effect relationship: being overweight caused early death. Newer evidence, however,
suggests that this is incorrect. Instead, it turns out that obesity is often associated with
inactivity, and inactivity is what causes the problems. Overweight people who are active
actually have lower mortality rates than normal-weight people who are sedentary
(Kampert, Blair, Barlow, & Kohl, 1996).

Thus, a correlation, by itself, cannot indicate a cause-and-effect relationship. Some
correlations do indicate causation, but many do not. As a result, correlational results
are important and instructive but must be interpreted with care.
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INTERPRETING THE DATA

Any data collected in the real world contain variability, and data in psychology are no
exception. In memory experiments, for example, different research participants recall
different numbers of items, and the same participant is likely to perform differently if
tested again later. But investigators nonetheless hope to draw general conclusions from
data despite this variability. Nor is variability necessarily the enemy, because as we shall
see, understanding the sources of variability in one’s data can provide insights into the
factors that influence the data.

Let us first consider how the pattern of variability can be used as a source of
information concerning why the data are as they are. From this base, we will turn to the
specific procedures that researchers use in implementing this logic, as they seek to ask
whether their data are reliable or not and whether their data will support their
conclusions or not. (Some readers may prefer to focus just on the procedures necessary
for statistical analysis, rather than the underlying conceptualization; those readers can
skip ahead to the heading, “Hypothesis testing.”)

Accounting for Variability
As an example of how variability may be explained, consider a person shooting a pistol
at a target. Although she always aims at the bull’s-eye, the shots scatter around it
(Figure A.7A). Assuming that the mean is the bull’s-eye, the variance of these shots is
the average squared deviation of the shots from the center. Suppose we find this vari-
ance to be 100; we next must explain it.

If the shooting was done outdoors, the wind may have increased the spread; moving
the shooter to an indoor shooting range produces the tighter grouping shown in Figure
A.7B. The new variance is 80, a reduction of 20 percent. This means that the wind
accounts for 20 percent of the original variance.

A.7 Results of target shooting under
several conditions In each case, the bull’s-
eye is the mean, and the variance is the
average squared deviation of the shots from
the bull’s-eye.

D.  Indoors, mountB. Indoors, no mount

C. Outdoors, mountA. Outdoors, no mount
Variance = 100 Variance = 50

Variance = 80 Variance = 30
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In addition, some of the initial variance may have resulted from the unsteady hand
of the shooter, so we now mount the gun (although still leaving it outdoors). This yields
a variance of 50 (Figure A.7C), a reduction of 50 percent. So 50 percent of the variance
can be attributed to the shaky hand of the shooter. To find out how much of the vari-
ance can be explained by both the wind and the shaking, we mount the gun and move
it indoors; now we may find a variance of only 30 (Figure A.7D). This means we have
explained 70 percent of the variance, leaving 30 percent unaccounted for.* 

But not all changes in the situation will reduce the variance. For example, if we find
that providing the shooter with earmuffs leaves the variance unchanged, we know that
none of the original variance was due to the noise of the pistol.

VA R I A N C E  A N D  EX P E R I M E N TS

Figure A.8 shows how this approach can be applied to the experiment on visual imagery
described earlier (see pp. A4–A5). Figure A.8A shows the distribution of scores for all
twenty people in the experiment lumped together; the total variance of this overall
distribution is 6.25. But as we saw, the ten members of the experimental group had
been instructed to use visual imagery in memorizing, whereas the ten members of the
control group were given no special instructions. How much of the overall variance can
be explained by the difference in these instructions? In Figure A.8B, the distributions
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A.8 Accounting for variance in an
experiment on memorizing (A) The dis-
tribution of number of words recalled is
shown for all twenty participants lumped
together; the variance of this distribution is
6.25. (B) The distributions of the experi-
mental and control groups are displayed
separately. The number of words recalled
by the group that received imagery
instructions is shown in blue; the number
recalled by the control group that received
no special instructions is shown in red.
Within each of these groups, the variance is
about 4.00. (C) The distribution of words
recalled is plotted separately for men and
women regardless of how they were
instructed. Blue indicates the number of
words recalled by women, red the number
recalled by men. The variance is 6.25.

* We are grateful to Paul Rozin for suggesting this example.
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are no longer lumped together. They are instead presented as two separate histograms;
the people who received imagery instructions are shown in blue, while those who did
not are indicated in red. As the figure shows, there is less variability within either the
imagery group or the control group than within the overall distribution that lumped
both kinds of participants together. While the variance in the overall distribution is
6.25, the variance within the two subgroups averages to only 4.0. We conclude that the
difference between the two sets of instructions accounted for 36 percent of the vari-
ance and that 64 percent (4 � 6.25) still remains unexplained.

Figure A.8C shows a situation in which an independent variable (in this case, sex)
accounts for little or none of the variance. In this figure, the participantsí scores are again
presented as two histogramsóseparately depicting the scores of the men and the women
(regardless of whether they were instructed to use imagery or not). The menís scores are
shown in red, the womenís in blue. Now the variance of the two subgroups (that is, men
versus women) averages to 6.25, a value identical to that found for the overall distribu-
tion. We conclude that the participantís sex accounts for none of the overall variance in
recall.

VA R I A N C E  A N D  CO R R E L AT I O N

The technique of explaining the variance in one variable by attributing it to the effect
of another variable can also be applied to correlational studies. Here, the values of one
variable are explained (that is, accounted for) when the values of the other variable are
known. Recall the taxicab example, in which a correlation of +.46 was found between
taxi drivers’ earnings and their scores on an aptitude test. Since the correlation is nei-
ther +1.00 nor 0, some but not all of the variance in job performance can be explained
by the test scores. The greater the magnitude of r, the more variance is accounted for.
The rule is that the proportion of variance that is explained equals r2. If r = +.46, one
variable accounts for (.46)2 = .21 (21 percent) of the variance of the other. (Just why
this proportion is r2 is beyond the scope of this discussion.)

To put this another way, suppose all the cab drivers were identical in their perform-
ance on the aptitude test, which measured knowledge of local geography. This means
that the variance on that variable would be zero. As a result, the variability on the sec-
ond variable, earnings, would be reduced, and the formula tells us by how much. The
original variance on earnings can be determined from the data in Figure A.6A. It is 4.
Its correlation with the aptitude test is +.46. If we remove the variance caused by dif-
ferences in how much the cab drivers know about local geography, the variability on
earnings will be 4 − (.46)2 × 4 = 3.16. The drop in the variance from 4 to 3.16 is a reduc-
tion of 21 percent. So the aptitude test does help us to predict taxicab earnings, for it
accounts for 21 percent of the variance. But a good deal of the variance, 79 percent, is
still unexplained.

Hypothesis Testing
The logic we have described—cast in terms of explaining the variance—lies at the
heart of many techniques used for statistical analysis. For example, we saw that the
participant’s sex accounts for none of the overall variance in recall in our (hypotheti-
cal) imagery experiment; this is what tells us that we can reject the hypothesis that sex
is relevant to performance in this task. Conversely, we saw that the variance is reduced
if we divide the data according to experimental group (imagery group versus control
group); this tells us that imagery is relevant here.
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But how exactly is this logic put into practice? In this section, we tackle this question
by means of some simple examples.*

Much behavioral research attempts to answer questions such as: Does the amount of
food a person eats depend on the effort required to eat it? Can people learn while they
are sleeping? Is drug X more effective than drug Y? Each of these questions suggests an
experiment.

T E ST I N G  H Y P OT H E S E S  A BO U T  S I N G L E  SCO R E S

We will begin by testing a hypothesis about single scores. Consider the problem in
identifying people with dyslexia. As one step in identifying such people, we might give
each person a test of reading comprehension. If the person’s score was unusually low,
this might be an indication of dyslexia (although several other tests would be needed
to confirm this possibility). The question, though, is how low a score must be before it
is “unusually low.”

We know from the start that reading scores among nondyslexic readers 
vary—some read rather well, others read at some middle level, and some read rather
poorly. As a result, it is possible that a poor reader is not dyslexic at all; he is simply
at the low end of the normal range for reading skills. How can we evaluate this
possibility?

Suppose we tested a large number of nondyslexic readers and found that the average
reading score is 50, that the standard deviation of these scores is 10, and that the scores
are normally distributed. We now look at the reading score from an individual we are
concerned about. Let us say that her score is 40. How likely is it that she has dyslexia?
This is equivalent to asking: How unlikely is a score of 40 within the distribution of
scores obtained by the general population (that is, a population of people who we
believe are not dyslexic)? To answer these questions, we can convert her score to a 
z-score by computing its distance from the mean and dividing this difference by the
standard deviation. The resulting z-score is (40 − 50)/10 or −1 SD. Since the distribu-
tion is normal, Figure A.3 tells us that 16 percent of the general population would score
as low or even lower than this. Under the circumstances, it’s plausible that a score of 40
does not indicate dyslexia; this score is common enough even among people without
dyslexia. Our conclusion might be different, though, if the score were 30 or below. For
then the z-score would be (30 − 50)/10 or −2, 2 SDs below the mean for the general
population. Only 2 percent of the population obtain scores this low, and so we might
now feel more comfortable concluding that a person with this particular score is likely
not to be drawn from the general population. Instead, we might conclude that this
score is likely to have been drawn from a different population—the population of peo-
ple who do in fact suffer from dyslexia.

In this example we have to decide between two hypotheses about this individual’s
score. One hypothesis is that the score was drawn from the population of nondyslexic
readers. True, a score of 40 or even 30 might seem atypical, but, on this view, this is

* The logic of explaining variance is crucial for most statistical procedures, but this logic turns out to be most visi-
ble with more complicated cases—for example, cases involving the comparison of two different groups (as in the
example illustrated in Figure A.8), or the analysis of experiments in which two variables are manipulated. (For
example, an experimenter might ask whether imagery instructions are as helpful for children as they are for adults;
in this case, the experiment’s design would have four groups: children and adults, and, then, within each of these
groups, some participants given imagery instructions and some not). In the following pages, however, we have cho-
sen to use simpler examples. This makes the underlying logic, in terms of explaining the variance, a bit less obvious,
but it also makes the statistical procedures themselves much easier to grasp!



merely a reflection of the ordinary variability around the mean of the broader popula-
tion. This is the null hypothesis, the hypothesis that there really is no systematic differ-
ence between the particular observation we are interested in and other observations
we have made on other occasions and with other individuals. The alternative hypoth-
esis is that the null hypothesis is false and that the score now before us is far enough
away from the other scores for us to conclude that it did not arise by chance and is
instead in a different category (in our example, the category of scores obtained by peo-
ple with dyslexia).

As we have already suggested, the choice between these two hypotheses turns out to
be a matter of probabilities. In essence, we start by adopting the working assumption
that the null hypothesis is correct, and ask, within this assumption, what the probabil-
ity would be of obtaining the score we have before us. If this probability—computed
from the z-score—is relatively high (that is, if this score would be observed relatively
often if the null hypothesis were correct), we conclude that the score poses no challenge
to the null hypothesis, and so we accept the null hypothesis as probably correct. If, on
the other hand, we start by assuming the null hypothesis, but then calculate that the
score would be extremely rare under the null hypothesis, then we have two choices:
either we have just observed an extremely rare event or the null hypothesis is false. Since
the first of these choices is, by definition, very unlikely, we opt for the second choice.

With this logic, all depends on the z-score associated with our observation, and so,
in the context of hypothesis testing, the z-score is referred to as the critical ratio.
Behavioral scientists generally stipulate a critical ratio of 2 as the cutoff point. If it is 2
or more, they generally reject the null hypothesis and conclude that the test observation
is systematically different from the control observations. Critical ratios of 2 or more are
considered statistically reliable, which is just another way of saying that the null hypoth-
esis can be rejected. Critical ratios of less than 2 are considered too small to allow the
rejection of the null hypothesis.*

This general procedure is not foolproof. It is certainly possible for an individual to
have a reading score of 30 (a critical ratio of 2) or even lower without being dyslexic.
According to Figure A.3, this will happen about 2 percent of the time. Raising the cut-
off value to a critical ratio of 3 or 4 would make such errors less common but would
not eliminate them entirely; furthermore, raising the critical value might mean failure
to detect some individuals with dyslexia. One of the important consequences of the
variability in psychological data can be seen here: the investigator who has to decide
between two interpretations of the data (the null hypothesis and the alternative
hypothesis) cannot be correct all the time. Using statistics, in other words, is a matter
of playing the odds.

T E ST I N G  H Y P OT H E S E S  A BO U T  M E A N S

In the preceding discussion, our concern was with hypotheses about single scores. We
now turn to the more commonly encountered problems in which the hypotheses
involve means.
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*Many authors use the term statistically significant instead of statistically reliable, and the decision process we are
describing is sometimes referred to as significance testing. However, the term we are using, reliability, seems preferable
for two reasons. First, what the statistics are measuring really is a matter of reliability—that is, whether the obser-
vation before us is likely to be an accident (and so probably would not reappear if we ran the test again), or whether
it is reliable (and so would reappear if we retested). Second, the term significance implies that a result is important,
consequential, worth publicizing. The statistical tests tell us none of those things, and so a “statistically significant”
result might, in truth, be entirely insignificant in the eyes of the world! Hence the label of statistical significance seems
a misnomer.
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In many experiments, the investigator compares two or more groups—participants
tested with or without a drug, with or without imagery instructions, and so on. Suppose
we get a difference between the groups. How do we decide whether the difference is
genuine rather than due merely to chance?

Let us return to the experiment in which memory for words was tested with and
without instructions to imagine the items. To simplify, we will here consider a modified
version of the experiment in which the same participants serve in both the imagery and
the nonimagery conditions. Each participant memorizes a list of 20 words without
instructions, then memorizes a second list of 20 words under instructions to visualize.
What we want to know is whether the participants show any improvement with the
imagery instructions. There is no separate control group in this experiment. Because
each personís score while using imagery can be compared with his score without using
imagery, each provides his own control.*

Table A.6 gives data for the ten participants in the experiment. For each one, the
table lists the number of words recalled without imagery instructions, the number
recalled with such instructions, and the improvement (the difference between the two
scores). The mean improvement overall is 3 words, from a mean of 8 words recalled

Alphonse 11 5 6
Betsy 15 9 6
Cheryl 11 5 6
Davis 9 9 0
Earl 13 6 7
Fred 10 11 −1
Germaine 11 8 3
Hortense 10 11 −1
Imogene 8 7 1
Jerry 12 9 3

Mean 11 8 3

Variance of improvement scores = = 8.8

Standard deviation of improvement scores = �8.8
—

= 2.97

sum of (score � 3)2

10

Number of Items Recalled With and Without Imagery Instruction,
for Ten Participants

TA
B

LE

A.6
SUBJECT SCORE WITH SCORE WITHOUT IMPROVEMENT

IMAGERY IMAGERY

* This sort of design, in which participants serve in more than one condition, is called a within-subjects design, in con-
trast to a between-subjects design in which different people serve in the different conditions. Within-subjects designs
have certain advantages; among them, we can obviously be certain that the participants in one group are identical to
the participants in the other group. But within-subjects designs also introduce their own complications. For example,
if the participants serve in one condition first, then in the other condition, then this creates a confound: any differ-
ences observed might be due to the effects of practice, which obviously benefits the second condition. For present pur-
poses, we ignore these complications (and also the steps needed to control for this confound). For more on this issue,
though, see Chapter 1. In any case, the logic of the statistics here is very similar to the logic relevant to between-sub-
jects designs, and so we will use this (simpler) case as a way to convey this logic.
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without imagery to a mean of 11 words with imagery. But note that this does not hold
for all participants. For example, for Fred and Hortense, the “improvement” is negative:
they both do better without imagery instructions. But is there an imagery facilitation
effect overall? Put in other words, is the difference between the two conditions statisti-
cally reliable?

As one way to approach this question, note that, ultimately, we are not trying to draw
conclusions about the specific ten people we ran in the experiment. Instead, we want to
draw broader conclusions, about the population at large. One way to make sure our
data justify such broad conclusions would be to test the entire population in our
study—every adult in North America, justifying claims about North America, or every
adult in Europe, justifying claims about Europe, and so on.

Of course, we could not run these huge studies—they would require absurd
amounts of time and effort. What we do instead is test a sample of individuals, and so
we observe a mean for this sample. But can we extrapolate from this sample? It is use-
ful to keep in mind here that we might easily have run a different sample, and it would
have produced its own mean, or some other sample, with its own mean, and on and
on and on for the vast number of samples we could have tested. Each sample would
produce a mean (called, for obvious reasons, a sample mean), and, if we did in fact run
sample after sample, we would end up with a set of sample means. From that set—
from the distribution of sample means—we could compute a mean of all the means,
and this would tell us something about the broader population (and so this mean of
means, averaging together all the samples we might gather, is called the population
mean). We could also ask how variable this set is—by computing a standard deviation
for the distribution of sample means.

What we really want to ask, therefore, is whether the sample mean we actually
obtained (based on the data in Table A.6) is representative of the population mean—
the average that we would observe if we ran sample after sample after sample and aver-
aged them all together. The possibility that we hope for is that our sample mean is
representative of this larger group, which is equivalent to claiming that we would get
roughly the same result if we were to do the experiment a second, third, or fourth time.
A different possibility, though, is that our sample mean is just a lucky accident—
showing an apparent difference between the conditions that would not show up reli-
ably if we performed the experiment again and again. This latter possibility is, in this
context, the null hypothesis. As we mentioned, the null hypothesis is, in general, a
claim that there is no systematic difference between the observations we are comparing.
In the dyslexia case, this was a claim that the person we had tested was not systemati-
cally different from the broader population. In the present case, it is a claim that there
is no systematic difference between memory with imagery and memory without. It is,
therefore, the claim that, if we conducted the memory experiment again and again, we
would not observe a difference, and therefore the difference that has emerged in our
data is just a fluke.

We test the null hypothesis in the memory experiment in the same way that we did
in our dyslexia example. In that example, we computed a critical ratio (that is, a z-score)
based on the difference between the score we had actually observed and the mean that
was predicted by the null hypothesis. The null hypothesis claimed that the individual
we tested was not dyslexic, and so the relevant mean was the mean for the broad pop-
ulation of nondyslexics. In the present example, we follow the same logic. The null
hypothesis claims that, if we run the test over and over, we will not observe a difference,
and so the mean we should expect, on this hypothesis, is zero. (In other words, the null
hypothesis claims that the population mean, in this case the mean difference between
the imagery and control conditions, is zero.)
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The formula we will use for the present case is the standard one:

Z = 

The score we will use in this calculation will be the sample mean we actually obtained—
a value of 3 (see Table A.6). The mean (M) will be the mean assumed by the null hypoth-
esis—in this case, zero. But what is the denominator? It is the standard deviation from
the set of all the sample means, a measure of how variable the data would be as we move
from one sample to another. This value—the standard deviation of a distribution of
sample means—is called the standard error (SE) of the mean. Its value is determined by
two factors: the standard deviation of the sample and the size of that sample.
Specifically,

SE = (4)

Why this formula takes this particular form is beyond the scope of our discussion.
Two elements of the formula should, however, seem sensible. First, in calculating the
standard error, all we have to go on in most cases is information about the actual sam-
ple we have observed. We have no information about all those other samples that we
might have tested (but actually did not!). Therefore, it is plausible that our estimate of
how variable the data would be in general (and this is, of course, exactly what the stan-
dard error measures) depends heavily on how variable our original sample is (that is,
what the standard deviation of the sample measures). It should, in other words, be no
surprise that the standard error is proportional to the standard deviation.

Second, it should also seem right that the standard error goes down as the size of
our particular sample goes up. If our sample included only two or three observations,
then it is entirely likely that our sample mean has been drawn off by one or more atyp-
ical scores. If our sample was larger, then the impact of these atypical scores would be
diluted within the larger data set. In that case, our sample would more likely be reflec-
tive of the population at large, and our estimate of the standard error is correspond-
ingly lowered.

In any case, with the standard error now defined, we can conclude our analysis of the
results of our memorization experiment. The critical ratio to be evaluated is

Critical ratio = 

Since the population mean is assumed to be zero (by the null hypothesis), this
expression becomes

Critical ratio  = (5)

To compute the standard error, we first find the standard deviation of the imagery
scores; this turns out to be 2.97, as shown in Table A.6. Then equation (4) tells us

SE = = = .99

The critical ratio is now the obtained mean difference divided by the standard error, or
3/.99 = 3.03. This is clearly larger than 2.0, so we conclude that the observed difference
in memory between the imagery and control conditions probably should not be

2.97

��10 − 1

SD

��N − 1

obtained sample mean
SE

obtained sample mean − population mean
SE

SD

��N − 1

(score − M)
SD
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attributed to chance. Said differently, the sample we have run (which does show a dif-
ference between conditions) is probably representative of the data we would get if we
ran the experiment again, with a new group of participants and a new set of stimuli.
Thus the pattern is deemed reliable, and so we can conclude that giving visual imagery
instructions does improve recall.*

CO N F I D E N C E  I N T E R VA LS

In using statistics to test hypotheses, we ask whether a certain sample mean could have
been drawn by chance from a set of sample means distributed around some assumed
population mean. (When testing the null hypothesis, this assumed population mean is
zero.) But there is another way of phrasing the entire issue: given a sample of data with
its own sample mean, can we extrapolate from this in a fashion that allows us to spec-
ify, with reasonable confidence, what the possible range of values might be for the pop-
ulation mean? If we know the standard error of the mean, the answer is yes. We have
already seen that about 2 percent of the scores in a normal distribution are more than
2 SDs above the distribution’s mean (see Figure A.3). Similarly, about 2 percent of the
scores have values lower than 2 SDs below the mean. Since this is so, we can conclude
that the chances are roughly 96 in 100 that the population mean is within an interval
whose largest value is 2 SEs above the sample mean and whose lowest value is 2 SEs
below. Because we can be fairly (96 percent) confident that the actual population mean
will fall within this specified range, it is often called the confidence interval.

As an example, consider the prediction of elections. During election campaigns,
polling organizations report the current standing of various candidates by statements
such as the following: “In a poll of 1,000 registered voters, 57 percent favored candidate
Smith; the margin of error was 3 percent.” This margin of error is the confidence inter-
val around the proportion (that is, ± 3 percent).

To determine this confidence interval, the pollsters compute the standard error of the
proportion they found (in this case, .57). This standard error is analogous to the standard
error of a mean we discussed in the previous section. Given an N of 1,000, this standard
error happens to be .015.** Since 2 × .015 is .03 or 3 percent, the appropriate confidence
interval for our example is the interval from 54 to 60 percent. Under the circumstances,
candidate Smith can be fairly confident that she has the support of at least 50 percent of
the electorate, since 50 percent is well below the poll’s confidence interval (see Figure A.9).

Some Implications of Statistical Inference
The methods of testing hypotheses and estimating confidence intervals that we just
described are routinely employed in evaluating the results of psychological research. But
they have several characteristics that necessarily affect the interpretation of all such results.

* There are several simplifications in this account. One is that the critical ratio described here does not have an
exactly normal distribution. When the sample size is large, this effect is unimportant, but for small samples (like the
one in the example) they can be material. To deal with these and related problems, statisticians often use measures
that refer to distributions other than the normal one. An example is the t-test, a kind of critical ratio based on what
is called the t-distribution.

** The standard error of a proportion (e.g., the proportion of polled voters who express pro-X sentiments) is anal-
ogous to the standard error of the mean and measures the precision with which our sample proportion estimates
the population proportion. The formula for the standard error of a proportion p is:

SEp =��
In our example, p = .57 and N = 1,000, so SEp = .015.

p × (1 – p)

N
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T H E  P ROBA B I L I ST I C  N AT U R E  O F  H Y P OT H E S I S  T E ST I N G  
A N D  CO N F I D E N C E  I N T E R VA LS

As we have already noted, the nature of statistical testing always leaves the possibility
of error. In our dyslexia case, we discussed the fact that it is unlikely that someone with
a score 2 SDs below the population mean is, in truth, drawn from that population, but
it is still possible. (In fact we know exactly how often this sort of unusual occurrence
would occur: 2 percent of the time.) Likewise, if we use a confidence interval of ± 2 SEs,
the chance that the population mean (or proportion, or whatever) falls outside of that
interval is less than 4 or 5 in 100. This is a small chance for error, but it is still a chance.

Do we want to be more confident than this? If so, we might use a confidence inter-
val of ± 3 SEs, where the equivalent chance is only 1 in 1,000. The same holds for crit-
ical ratios. If we want to be cautious, we might insist that the critical ratio be larger than
the usually assumed value of 2—perhaps 3 (a chance factor of 1 in 2,000) or 4 (1 in
20,000), and so on. But the likelihood of these chance occurrences is never zero, and
so, as long as there is some unexplained variance, there is some possibility of error.

The probabilistic nature of statistical reasoning has another consequence. Even if we
can come to a correct conclusion about the mean of a population (or a proportion, as in
polls), we cannot generalize to individuals. The variability within the population (or
within our sample) simply prohibits us from applying claims, true for the population,
to each individual within the population. Thus, a study which shows that men have
higher scores than women on spatial relations tests does not preclude the existence of
brilliant female artists or architects.

T H E  RO L E  O F  SA M P L E  S I Z E

A last point concerns the role of sample size in affecting how the results are interpreted.The
larger the sample, the smaller the standard error and the smaller the confidence interval
around the mean or the proportion. This can have major effects on hypothesis testing.

Suppose that, in the population, a certain independent variable produces a very
small difference. As an example, suppose that the population difference between men
and women on a certain test of spatial relations is 1 percent. We would probably be
unable to reject the null hypothesis (that is, the hypothesis that there is no sex differ-
ence on the test) with samples of moderate size. But if the sample size were sufficiently
large, we could reject the null hypothesis. For an N of such magnitude would lead to a
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A.9 A candidate’s poll results and her
confidence intervals The results of a
mythical poll conducted for a no-less-
mythical candidate Smith by randomly
sampling 200 people in each of five regions
of the United States. The figure shows the
pro-Smith proportions in each region,
together with the confidence intervals
around them, and indicates that she is
ahead in all five samples. But there are two
regions where she cannot be confident that
she is ahead in the population—the South
and the Southwest, where the confidence
intervals of the pro-Smith proportion dip
below 50 percent.



A26 appendix PSTATISTICS: THE DESCRIPTION, ORGANIZATION, AND INTERPRETATION OF DATAO

• Statistical methods concern the ways in which investigators
describe, organize, and interpret collections of numerical
data. A crucial concern of statistical endeavors is to interpret
the variability that is encountered in all research.

• An early step in processing numerical data is scaling, a proce-
dure for assigning numbers to psychological responses.
Scales can be categorical, ordinal, interval, or ratio scales. These
differ in the degree to which they can be subjected to arith-
metical operations.

• An important step in organizing the data is to arrange them
in a frequency distribution, often displayed in graphic form, as
in a histogram. Frequency distributions are summarized by a
measure of central tendency. The common measure of central
tendency is the mean ( M), though sometimes another meas-
ure, the median, may be preferable, as in cases when the distri-
bution is skewed. Important measures of variability are the
variance (V ) and the standard deviation (SD).

• One way of comparing two scores drawn from different dis-
tributions is to convert both into percentile ranks. Another is
to transform them into z-scores, which express the distance
of a score from its mean in standard deviations. The per-
centile rank of a z-score can be computed if the shape of that
score’s distribution is known. An important example is the
normal distribution, graphically displayed by the normal curve,
which describes the distribution of many psychological vari-
ables and is basic to much of statistical reasoning.

• In some studies, the relation between variables is expressed
in the form of a correlation, which may be positive or negative.
It is measured by r, the correlation coefficient, a number that
can vary from +1.00 to −1.00. Correlations reflect the extent
to which two variables vary together, but they do not
necessarily indicate that one of them causes the other.

• One of the main functions of statistical methods is to help
test hypotheses about a population given information about
the sample. An important example is the difference between
mean scores obtained under two different conditions. Here,
the investigator has to decide between the null hypothesis,
which asserts that the difference was obtained by chance, and
the alternative hypothesis, which asserts that the difference is
genuine and exists in the population. The decision is made by
dividing the obtained mean difference by the standard error
(SE), a measure of the variability of that mean difference. If
the resulting ratio, called the critical ratio, is large enough, the
null hypothesis is rejected, the alternative hypothesis is
accepted, and the difference is said to be statistically reliable. A
related way of making statistical decisions is by using a confi-
dence interval, or margin of error. This is based on the variabil-
ity of the scores from a sample and determines the interval
within which the population mean or proportion probably
falls.

decrease in the standard errors of the sample means, which in turn would lead to an
increase in the critical ratio. Someone who read a report of this experiment would now
learn that, by using thousands of participants, we discovered a reliable difference of 1
percent. A fair reaction to this bit of intelligence would be that the null hypothesis can
indeed be rejected, but that the psychological significance of this finding is rather
slight. The moral is simple: Statistical reliability does indicate a difference and, more-
over, indicates that the difference is unlikely to be a fluke or chance occurrence. But sta-
tistical reliability, by itself, does not indicate whether the effect discovered is of
psychological significance or of any practical importance.

S U M M A R Y   A P P E N D I X
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