Chapter 8
Speech Synthesis

Speech synthesis
Text-to-speech
TTS

And computers are getting smarter all the time: Scientists tell us that soon they will be
able to talk to us. (By ‘they’ I mean ‘computers’: I doubt scientists will ever be able to

talk to us.)
Dave Barry

In Vienna in 1769, Wolfgang von Kempelen built for the Empress Maria Theresa the
famous Mechanical Turk, a chess-playing automaton consisting of a wooden box filled
with gears, behind which sat a robot mannequin who played chess by moving pieces
with his mechanical arm. The Turk toured Europe and the Americas for decades, de-
feating Napolean Bonaparte and even playing Charles Babbage. The Mechanical Turk
might have been one of the early successes of artificial intelligence were it not for the
fact that it was, alas, a hoax, powered by a human chess player hidden inside the box.
What is less well known is that von Kempelen, an extraordinarily prolific inventor,
also built between 1769 and 1790 what was definitely not a hoax: the first full-sentence
speech synthesizer. His device consisted of a bellows to simulate the lungs, a rubber
mouthpiece and a nose aperature, a reed to simulate the vocal folds, various whistles for
the fricatives, and a small auxiliary bellows to provide the puff of air for plosives. By
moving levers with both hands to open and close aperatures, and adjusting the flexible
leather “vocal tract”, an operator could produce different consonants and vowels.
More than two centuries later, we no longer build our synthesizers out of wood and
leather, nor do we need human operators. The modern task of speech synthesis, also
called text-to-speech or TTS, is to produce speech (acoustic waveforms) from text.
Modern speech synthesis has a wide variety of applications. Synthesizers are used
in telephone-based conversational agents that conduct dialogues with people (Chap-
ter 24). Synthesizers are also important in non-conversational applications that speak
to people, such as in devices that read out loud for the blind or in video games or
children’s toys. Finally, speech synthesis can be used to speak for sufferers of neu-
rological disorders, such as astrophysicist Steven Hawking who, having lost the use
of his voice because of ALS, speaks by typing to a speech synthesizer and having the
synthesizer speak the words. State of the art systems in speech synthesis can achieve
remarkably natural speech for a very wide variety of input situations, although even the
best systems still tend to sound wooden and are limited in the voices they use.
The task of speech synthesis is to map a text like the following:

(8.1) PG&E will file schedules on April 20.

to a waveform like the following:

250 Chapter 8. Speech Synthesis

Speech synthesis systems perform this mapping in two steps, first converting the

input text into a phonemic internal representation and then converting this interna]
Textanalysis representation into a waveform. We will call the first step text analysis, and the second
Vg;;fﬁ;;;’; step waveform synthesis (although other names are also used for these steps).

A sample of the internal representation for this sentence is shown in Fig. 8.1. Note
that the acronym PG&E is expanded into the words P G AND E, the number 20 ig
expanded into twentieth, a phone sequence is given for each of the words, and there is
also prosodic and phrasing information (the *’s), which we define later.

¥ kS ’ /* L‘L%
B G AND | E| WILL | FILE SCHEDULES | ON APRIL TWENTIETH
pl iy| jb| iy| ae| n| d |iy | w] ih| 1] f] ay| 1] s| k| eh| jh| ax] 1| z| aa n| ey| p| t] ih] 1 t| w| eh| nf t] iy| ax| th

LAEUGRAY Intermediate output for a unit selection synthesizer for the sentence PG&E will file schedules on Apri]
20.. The numbers and acronyms have been expanded, words have been converted into phones, and prosodic features
have been assigned.

While text analysis algorithms are relatively standard, there are three widely differ-
ent paradigms for waveform synthesis: concatenative synthesis, formant synthesis,
and articulatory synthesis. The architecture of most modern commercial TTS sys-
tems is based on concatenative synthesis, in which samples of speech are chopped up,
stored in a database, and combined and reconfigured to create new sentences. Thus, we
focus on concatenative synthesis for most of this chapter, although we briefly introduce
formant and articulatory synthesis at the end of the chapter.

Figure 8.2 shows the TTS architecture for concatenative unit selection synthesis,
using the two-step hourglass metaphor of Taylor (2008). In the following sections,
we examine each of the components in this architecture.

Hourglass
metaphor

PG&E will file schedules on April 20.

‘

Text I
Analysis
_ / Prioneric T
piy nd.. < Internal
. , Represenation
Waveform

Synthesis

Section 8.1. Text Normalization 251

8.1 Text Normalization

Text normalization To generate a phonemic internal representation, we must first preprocess or normalize
the raw text in a variety of ways. We’ll need to break the input text into sentences, deal
with the idiosyncracies of abbreviations, numbers, and so on. Consider the difficulties
in the following text drawn from the Enron corpus (Klimt and Yang, 2004):

He said the increase in credit limits helped B.C. Hydro achieve record net income

of about $1 billion during the year ending March 31. This figure does not include

any write-downs that may occur if Powerex determines that any of its customer

accounts are not collectible. Cousins, however, was insistent that all debts will

be collected: “We continue to pursue monies owing and we expect to be paid for

electricity we have sold.”

tokf}f{gt’l‘gi The first task in text normalization is sentence tokenization. To segment this para-

graph into separate utterances for synthesis, we need to know that the first sentence
ends at the period after March 31, not at the period of B.C. We also need to know that
there is a sentence ending at the word collected, despite the punctuation being a colon
rather than a period. The second normalization task is dealing with non-standard
words. Non-standard words include numbers, acronyms, abbreviations, and so on. For
example, March 31 needs to be pronounced March thirty-first, not March three one;
$1 billion needs to be pronounced one billion dollars, with the word dollars appearing
after the word billion.

8.1.1 Sentence Tokenization

We saw two examples above where sentence tokenization is difficult because sentence

boundaries are not always indicated by periods and can sometimes be indicated by

punctuation like colons. An additional problem occurs when an abbreviation ends a

sentence, in which case the abbreviation-final period is playing a dual role:

(8.2) He said the increase in credit limits helped B.C. Hydro achieve record net income of
about $1 billion during the year ending March 31.

(8.3) Cousins, however, was insistent that all debts will be collected: “We continue to pursue
monies owing and we expect to be paid for electricity we have sold.”

(8.4) The group included Dr. J. M. Freeman and T. Boone Pickens Jr.

A key part of sentence tokenization is thus period disambiguation; we’ve seen a
simple Perl script for period disambiguation in Chapter 3. Most sentence tokenization
algorithms are slightly more complex than this deterministic algorithm, and, in partic-
L ular, are trained by machine learning methods rather than being hand-built. We do this
training by first hand-labeling a training set with sentence boundaries and then apply-
ing any supervised machine learning method (decision trees, logistic regression, SVM,
etc.) to train a classifier to mark the sentence boundary decisions.

More specifically, we could start by tokenizing the input text into tokens separated
by whitespace and then select any token containing one of the three characters !, . or
? (or possibly also :). After hand-labeling a corpus of such tokens, we train a classifier
to make a binary decision (EOS (end-of-sentence) versus not-EOS) on these potential
sentence boundary characters inside these tokens.

252 Chapter 8. Speech Synthesis

The success of such a classifier depends on the features that are extracted for the
classification. Let’s consider some feature templates we might use to disambiguate
these candidate sentence boundary characters, assuming we have a small amount of
training data labeled for sentence boundaries:

the prefix (the portion of the candidate token preceding the candidate)
the suffix (the portion of the candidate token following the candidate)
whether the prefix or suffix is an abbreviation (from a list)

the word preceding the candidate

the word following the candidate

whether the word preceding the candidate is an abbreviation

whether the word following the candidate is an abbreviation

Consider the following example:
(8.5) ANLP Corp. chairman Dr. Smith resigned.

Given these feature templates, the feature values for the period . in the word Corp.

in (8.5) would be
PreviousWord = ANLP NextWord = chairman
Prefix = Corp ’ Suffix = NULL

PreviousWordAbbreviation = 1 NextWordAbbreviation = 0

If our training set is large enough, we can also look for lexical cues about sen-
tence boundaries. For example, certain words may tend to occur sentence-initially or
sentence-finally. We can thus add the following features:

e Probability[candidate occurs at end of sentence]
e Probability[word following candidate occurs at beginning of sentence]

Finally, while most of the above features are relatively language independent, we
can use language-specific features. For example, in English, sentences usually begin
with capital letters, suggesting features like the following:

e case of candidate: Upper, Lower, AllCap, Numbers
e case of word following candidate: Upper, Lower, AllCap, Numbers

Similarly, we can have specific subclasses of abbreviations, such as honorifics or
titles (e.g., Dr., Mr., Gen.), corporate designators (e.g., Corp., Inc.), or month names
(e.g., Jan., Feb.).

Any machine learning method can be applied to train EOS classifiers. Logistic
regression (Section 6.6.2) and decision trees are two common methods; logistic regres-
sion may have somewhat higher accuracy, although we have instead shown a decision
tree in Fig. 8.3 because it is easier to see how the features are used.

8.1.2 Non-Standard Words

The second step in text normalization is normalizing non-standard words (NSW5s).
Non-standard words are tokens, like numbers or abbreviations, that need to be €x-
panded into sequences of English words before they can be pronounced.

Non-standard
words

Section 8.1. Text Normalization 253

FPaired digits

Serial digits

T e:nka/Type: addr,co

-group,state,unit

A decision tree from Richard Sproat for predicting whether a period “.” is an end
of sentence (YES) or not an end-of-sentence (NO). We use features like the log likelihood of the
current word being the beginning of a sentence (bprob), the previous word being an end-of-
sentence (eprob), the capitalization of the next word, and the abbreviation subclass (company,
state, unit of measurement).

Non-standard words are difficult because they are often ambiguous. For example,
the number 1750 can be spoken in at least four different ways, depending on the con-
text:

seventeen fifty: (in “The European economy in 1750”)

one seven five zero: (in “The password is 1750")

seventeen hundred and fifty: (in “1750 dollars™)

one thousand, seven hundred, and fifty: (in “1750 dollars™)

Similar ambiguities occur for Roman numerals like /V (which can be pronounced
four, fourth, or as the letters I V (meaning “intravenous™)), or 2/3, which can be
two thirds or February third or March second or two slash three.

Some non-standard words are composed of letters, such as abbreviations, letter
sequences, and acronyms. Abbreviations are generally pronounced as if expanded;
thus, Wed is pronounced Wednesday, and Jan I is pronounced January f irst.
Letter sequences like UN, DVD, PC, and IBM are pronounced letter by letter in a
sequence; IBM is thus pronounced [ay b iy eh m]. Acronyms like /KEA, MoMA,
NASA, and UNICEF are pronounced as if they were words; MoMA 1s pronounced
[m ow m ax]. Ambiguity occurs here as well; should Jan be read as a word (the name
Jan) or expanded as the month January? Different types of numeric and alphabetic
non-standard words are summarized in Fig. 8.4.

Each of the types has a particular realization (or realizations). For example, a year
(NYER) is generally read in the paired method, in which each pair of digits is pro-
nounced as an integer (e.g., seventeen fifty for 1750), while a U.S. zip code
(NZIP) is generally read in the serial method, as a sequence of single digits (e.g.,
nine four one one zero for 94110). The type BMONEY deals with the id-
iosyncracies of expressions like $3.2 billion, which must be read out with the word
dollars at the end, as three point two billion dollars. Forthe alpha-
betic NSWs, we have the class EXPN for abbreviations like N.Y. that are expanded,

————>

254 Chapter 8. Speech Synthesis
é EXPN abbreviation adv, N.:«Y., mph, gov't ,
= LSEQ letter sequence , DVD D€, PC UN IBM,
£ ASWD readasword IKEA, unknown words/names
" NoM | aumberfeardin 12,45, 112,06 -
'NORD ~ number (ordinal) May 7, 3rd, Bill Gates Il
NTEL telephone (or part of) 2125554573 .
NDIG number as digits Room 101 .
- NIDE identifier . M7 386 D pelll0 54
& 'NADDR number as street address 747, 386,15, pc110, 3A
g NZIP . ZipcodeorPOBox 91020 ..
= NTIME a (compound) time 3.20, 11:45
NDATE _a(compound) date 2/28/05, 28/02/05
NYER year(s) - 1998, 80s, 1900s, 2008
MONEY “money (US or other) $3.45, HK$300, Y20,200, $200K
BMONEY money tr/m/billions - $3.45 billion '
PRCT _percentage 75% 3.4%

g o] Some types of non-standard words in text normalization, selected frombTable 1 of
Sproat et al. (2001); not listed are types for URLs, emails, and some complex uses of punctuation.

LSEQ for acronyms pronounced as letter sequences, and ASWD for acronyms pro-
nounced as if they were words.

Dealing with non-standard words requires at least three steps: tokenization to sep-
arate and identify potential non-standard words, classification to label them with a type
from Fig. 8.4, and expansion to convert each type into a string of standard words.

In the tokenization step, we can tokenize the input by whitespace and then assume
that any word not in the pronunciation dictionary is a non-standard word. More so-
phisticated tokenization algorithms would also deal with the fact that some dictionaries
already contain some abbreviations. The CMU dictionary, for example, contains ab-
breviated (and hence incorrect) pronunciations for s, mr, mrs, as well as day and month
abbreviations like mon, tues, nov, dec, etc. Thus, in addition to unseen words, we also
need to label any of these acronyms and also single-character tokens as potential non-
standard words. Tokenization algorithms also need to split words that are combinations
of two tokens, like 2-car or RVing. Words can be split by simple heuristics, such as
splitting at dashes, or at changes from lower case o upper case.

The next step is assigning an NSW type; many types can be detected with simple
regular expressions. For example, NYER could be detected by the following regular
expression:

/(1[89][0-9][0-91)|(20[0-9][0-9V/

Other classes might be harder to write rules for, so a more powerful option is to use
a machine learning classifier with many features.

To distinguish between the alphabetic ASWD, LSEQ and EXPN classes, for exam-
ple we might want features over the component letters. Thus short, all-capital words
(IBM, US) might be LSEQ, longer all-lowercase words with a single-quote (gov't
cap’n) might be EXPN, and all-capital words with multiple vowels (NASA, IKEA)
might be more likely to be ASWD.

Section 8.1. Text Normalization 255

Another useful feature is the identity of neighboring words. Consider ambiguous
strings like 3/4, which can be a NUM (three-fourths) or an NDATE (march
third). NDATE might be preceded by the word on, followed by the word of, or have
the word Monday somewhere in the surrounding words. By contrast, NUM examples
might be preceded by another number or followed by words like mile and inch. Simi-
larly, Roman numerals like VII tend to be NORD (seven) when preceded by Chapter,
part, or Act, but NUM (seventh) when the words king or Pope occur in the neighbor-
hood. These context words can be chosen as features by hand or can be learned by
machine learning techniques like the decision list algorithm of Chapter 20.

We can achieve the most power by building a single machine learning classifier
that combines all the above ideas. For example, the NSW classifier of Sproat et al.
(2001) uses 136 features, including letter-based features like ‘all-upper-case’, ‘has-
two-vowels’, ‘contains-slash’, and ‘token-length’, as well as binary features for the
presence of certain words like Chapter, on, or king in the surrounding context. Sproat
et al. (2001) also included a rough-draft, rule-based classifier, which used hand-written
regular expression to classify many of the number NSWs. The output of this rough-
draft classifier was used as just another feature in the main classifier.

To build such a main classifier, we need a hand-labeled training set in which each
token has been labeled with its NSW category; one such hand-labeled database was
produced by Sproat et al. (2001). Given the labeled training set, we can apply any
supervised machine learning algorithm, such as the logistic regression or decision tree
algorithms discussed earlier. For each observed token o; we extract the features dis-
cussed above. Then we train the classifier to use these features to try to predict the
hand-labeled NSW category from Fig. 8.4.

The third step in dealing with NSWs is expansion into ordinary words. One NSW
type, EXPN, is quite difficult to expand. The type includes abbreviations and acronyms
Jike NY. Generally these must be expanded with the help of an abbreviation dictionary,
and any ambiguities can be dealt with by the homonym disambiguation algorithms
discussed in the next section.

Expansion of the other NSW types is generally deterministic. Many expansions
are trivial; for example, LSEQ expands to a sequence of words, one for each letter,
ASWD expands to itself, NUM expands to a sequence of words representing the cardi-
nal number, NORD expands to a sequence of words representing the ordinal number,
and NDIG and NZIP both expand to a sequence of words, one for each digit.

Other types are slightly more complex; NYER expands to two pairs of digits, unless
the year ends in 00, in which case the four years are pronounced as a cardinal number
(2000 as two thousand) or in the hundreds method (e.g., 1800 as eighteen
hundred). NTEL can be expanded just as a sequence of digits; alternatively, the last
four digits can be read as paired digits, in which each pair is read as an integer. It is
also possible to read them in a form known as trailing unit, in which the digits are read
serially until the last non-zero digit, which is pronounced followed by the appropriate
unit (e.g., 876-5000 as eight seven six five thousand). The expansions
of NDATE, MONEY, and NTIME are left as Exercises 8.1-8.4 for the reader.

Of course, many of these expansions are dialect-specific. In Australian English,
the sequence 33 in a telephone number is generally read double three. Other
languages also present additional difficulties in non-standard word normalization. In

256 Chapter 8. Speech Synthesis

French or German, for example, in addition to the above issues, normalization may de-
pend on morphological properties. In French, the phrase [fille (‘one girl’) is normal-
ized to une fille, but I garcon (‘one boy’) is normalized to un garcon. Sim-
ilarly, in German, Heinrich IV (‘Henry IV’) can be normalized to Heinrich der
Vierte, Heinrich des Vierten, Heinrich dem Vierten, or Heinrich
den Vierten depending on the grammatical case of the noun (Demberg, 2006).

8.1.3 Homograph Disambiguation

The goal of our NSW algorithms in the previous section was to determine which se-
quence of standard words to pronounce for each NSW. But sometimes determining
how to pronounce even standard words is difficult. This is particularly true for homo-

Homograph graphs, which are words with the same spelling but different pronunciations. Here are
some examples of the English homographs use, live, and bass:

(8.6) It’s no use (/y uw s/) to ask to use (/y uw z/) the telephone.
(8.7) Do you live (/1 ih v/) near a oo with live (/1 ay v/) animals?
(8.8) I prefer bass (/b ae s/) fishing to playing the bass (/b ey s/) guitar.

French homographs include fils (which has two pronunciations [fis] ‘son’ versus
[fil] ‘thread’]), or the multiple pronunciations for fier (‘proud’ or ‘to trust’), and est
(‘is’ or ‘East’) (Divay and Vitale, 1997).

Luckily for the task of homograph disambiguation, the two forms of homographs
in English (as well as in similar languages like French and German) tend to have dif-
ferent parts of speech. For example, the two forms of use above are (respectively) a
noun and a verb, while the two forms of /ive are (respectively) a verb and a noun. Fig-
ure 8.5 shows some interesting systematic relations between the pronunciation of some
noun-verb and adj-verb homographs. Indeed, Liberman and Church (1992) showed
that many of the most frequent homographs in 44 million words of AP newswire are
disambiguatable just by using part of speech (the most frequent 15 homographs in or-
der are use, increase, close, record, house, contract, lead, live, lives, protest, survey,
project, separate, present, read).

Final voicing Stress shift ‘ -ate final vowel

N@shH N () N (init. stress) V (fin. stress) N/A (ﬁnal /ax/) V (fina

use yuws yuwz record rehlkaxtOd rixOkaolrd estimate ehstihmaxt eh s tih mey t

close klows klowz insult ihlnsax0lt ixOnsahllt separate sehpaxr axt seh paxreyt

house haws hawz object aalbjehOkt axObjehlkt moderate m aa daxraxt maadaxzeyt

Some systematic relationships between homographs: final consonant (noun /s/ versus verb /z/), stress
shift (noun initial stress versus verb final stress), and final vowel weakening in -ate noun/adjs.

Because knowledge of part of speech is sufficient to disambiguate many homo-
graphs, in practice we perform homograph disambiguation by storing distinct pronuf-
ciations for these homographs labeled by part of speech and then running a part-of-
speech tagger to choose the pronunciation for a given homograph in context.

There are a number of homographs, however, for which both pronunciations h
the same part of speech. We saw two pronunciations for bass (fish versus instrume

ave
nt)

Section 8.2. Phonetic Analysis 257

above. Other examples of these include lead (because there are two noun pronuncia-
tions, /1 1y d/ (a leash or restraint) and /1 eh d/ (a metal)). We can also think of the task
of disambiguating certain abbreviations (mentioned earlier as NSW disambiguation)
as homograph disambiguation. For example, Dr. is ambiguous between doctor and
drive, and St. between Saint or street. Finally, there are some words that dif-
fer in capitalizations like polish/Polish, which are homographs only in situations like
sentence beginnings or all-capitalized text.

In practice, these latter classes of homographs that cannot be resolved by part of
speech are often ignored in TTS systems. Alternatively, we can attempt to resolve them
by using the word sense disambiguation algorithms, like the decision-list algorithm of
Yarowsky (1997), which we will introduce in Chapter 20.

8.2 Phonetic Analysis

The next stage in synthesis is to produce a pronunciation for each word in the normal-
ized word strings from text analysis. The most important component here is a large
pronunciation dictionary. Dictionaries alone turn out to be insufficient, however, since
running text always contains words that don’t appear in the dictionary. For example
Black et al. (1998) used a British English dictionary, the OALD lexicon on the first
section of the Penn Wall Street Journal Treebank. Of the 39,923 words (tokens) in this
section, 1775 word tokens (4.6%) were not in the dictionary, of which 943 are unique
(i.e., 943 types). The distributions of these unseen word tokens was as follows:

Names Unknown Typos and othe
11360 351 64 :
76.6% 19.8% 3.6%

Thus, the two main areas in which dictionaries need to be augmented are in dealing
with names and with other unknown words. The next three sections discuss each of
these in order: dictionaries, names, and grapheme-to-phoneme rules for other unknown
words.

8.2.1 Dictionary Lookup

Phonetic dictionaries were introduced in Section 7.5. One of the most widely used
for TTS is the freely available CMU Pronouncing Dictionary (CMU, 1993), which has
pronunciations for about 120,000 words. The pronunciations are roughly phonemic,
from a 39-phone ARPAbet-derived phoneme set. Phonemic transcriptions means that
instead of marking surface reductions like the reduced vowels [ax] or [ix], CMUdict
marks each vowel with a stress tag: 0 (unstressed), 1 (primary stress), or 2 (secondary
stress). Thus, (non-diphthong) vowels with 0 stress generally correspond to [ax] or [ix].
Most of the words have only a single pronunciation, but about 8,000 of them have two
or even three pronunciations and some kinds of phonetic reductions are marked in these
pronunciations. The dictionary is not syllabified, although the nucleus is implicitly
marked by the (numbered) vowel. Figure 8.6 shows some sample pronunciations.

T

258 Chapter 8. Speech Synthesis
ANTECEDENTS AE2NTIHOSIYID AHONTS ~PAKISTANI P AEZKIHO S T AE1NIYQ
CHANG © CHAEING - TABLE . IEYIBAHOL
DICTIONARY D IHI K SH AHONEH2 R IY0 TROTSKY TRAAITSKIYD
DINNER DIHINERO | WALTER WAOILTERG:
JUNCH @ LAHINCH ~ \, . WALTZING W AOILTSIHONG
MCFARLAND M AHOKFAAIRL AHO ND WALTZING(2) W AOILSIHONG

OTReLk] Some sample pronunciations from the CMU Pronouncing Dictionary.

The CMU dictionary was designed for speech recognition rather than synthesis
uses; thus, it does not specify which of the multiple pronunciations to use for synthe-
sis, does not mark syllable boundaries, and because it capitalizes the dictionary head-
words, does not distinguish between, for example, US and us (the form US has the two
pronunciations [AH1 S]and [Y UW1 EH1 S)).

The 110,000 word UNISYN dictionary, freely available for research purposes, re-
solves many of these issues as it was designed specifically for synthesis (Fitt, 2002).
UNISYN gives syllabifications, stress, and some morphological boundaries. Further-
more, pronunciations in UNISYN can also be read off in any of dozens of dialects of
English, including General American, RP British, Australia, and so on. The UNISYN
uses a slightly different phone set; here are some examples:

going: {gou}.>1ing?>
antecedents; { * an . t7 i . s ii . dn! t }> s >
dictionary: {d+« ik .sh@.n @8 . ¥ 4l }

8.2.2 Names

The distribution of unknown words discussed on page 257 above indicated the im-
portance of names, including for example personal names (first names and surnames),
geographical names (city, street, and other place names), and commercial names (com-
pany and product names). Considering only personal names, Spiegel (2003) estimates
that there are about two million different surnames and 100,000 first names just for the
United States. Two million is a very large number: an order of magnitude more than
the entire size of the CMU dictionary. For this reason, most large-scale TTS systems
include a large name-pronunciation dictionary. As we saw in Fig. 8.6 the CMU dictio-
nary itself contains a wide variety of names; in particular, it includes the pronunciations
of the most frequent 50,000 surnames from an old Bell Lab estimate of US personal
name frequency, as well as 6,000 first names.

How many names are sufficient? Liberman and Church (1992) found that a dic-
tionary of 50,000 names covered 70% of the name tokens in 44 million words of AP
newswire. Interestingly, many of the remaining names (up to 97.43% of the tokens in
their corpus) could be accounted for by simple modifications of these 50,000 names,
such as adding stress-neutral suffixes to names like Walter or Lucas to produce Walters
or Lucasville. Other pronunciations might be created by rhyme analogy. If we have the
pronunciation for the name Trotsky, but not the name Plotsky, we can replace the initial
/tr/ from Trotsky with initial /pl/ to derive a pronunciation for Plotsky.

Techniques such as this, including morphological decomposition, analogical for-
mation, and mapping of unseen names to spelling variants already in the dictionary

Section 8.2. Phonetic Analysis 259

Grapheme-to-
phoneme

Letter-to-sound

(Fackrell and Skut, 2004), have achieved some success in name pronunciation. In
general, however, name pronunciation is still difficult. Many modern systems deal
with unknown names via the grapheme-to-phoneme methods described in the next sec-
tion, often by building two predictive systems, one for names and one for non-names.

Spiegel (2003, 2002) summarizes many more issues in proper name pronunciation.

8.2.3 Grapheme-to-Phoneme Conversion

Once we have expanded non-standard words and looked them all up in a pronuncia-
tion dictionary, we need to pronounce the remaining, unknown words. The process
of converting a sequence of letters into a sequence of phones is called grapheme-to-
phoneme conversion, sometimes shortened g2p. The job of a grapheme-to-phoneme
algorithm is thus to converta letter string like cake into a phone string like [K EY K].

The earliest such algorithms were rules written by hand in the Chomsky-Halle
rewrite rule format of Eq. 7.1 in Chapter 7. These are often called letter-to-sound
or LTS rules, and they are sometimes still used. LTS rules are applied in order, with
Jater (default) rules applying only if the context for carlier rules is not applicable. A
simple pair of rules for pronouncing the letter ¢ might be as follows:

c — [k]/ — {a0}V ;context dependent (8.9)
c — [s] - context independent (8.10)

Actual rules must be much more complicated (for example ¢ can also be pro-
nounced [ch] in cello or concerto). Even more complex are rules for assigning stress,
which are famously difficult for English. Consider just one of the many stress rules
from Allen et al. (1987), whereby the symbol X represents all possible syllable onsets:

vV — [astress] /X —C* {Vghort C C?IV} {Vghort C*|V} (8.11)

This rule represents the following two situations:

1. Assign I-stress to the vowel in a syllable followed by a weak syllable followed by a
morpheme-final syllable with a short vowel and 0 or more consonants (e.g., difficult).

2. Assign 1-stress to the vowel in a syllable preceding a weak syllable followed by a vowel
that is morpheme-final (e.g., oregano).

While some modern systems still use such complex hand-written rules, most sys-
tems achieve higher accuracy by relying instead on automatic or semi-automatic meth-
ods based on machine learning. This modern probabilistic grapheme-to-phoneme prob-
Jem was first formalized by Lucassen and Mercer (1984). Given a letter sequence L,
we are searching for the most probable phone sequence P;

P = argmax P(P|L) (8.12)
P

The probabilistic method assumes a training set and a test set; both sets are lists of
words from a dictionary, with a spelling and a pronunciation for each word. The next
subsections show how a classifier can be trained to estimate this probability P(P|L) and
applied to produce the pronunciation for an unseen word.

260

Chapter 8.

Speech Synthesis

Finding a Letter-to-Phone Alignment for the Training Set

Most letter-to-phone algorithms assume that we have an alignment that tells us which
phones align with each letter. We’ll need this alignment for each word in the training
set. A letter can align to multiple phones (e.g., x often aligns to k s), or to no phones
at all, like the final letter of cake in the following alignment:

One method for finding such a letter-to-phone alignment is the semi-automatic
method of Black et al. (1998). Their algorithm is semi-automatic because it relies
on a hand-written list of the allowable phones that can realize each letter. Here are
allowables lists for the letters ¢ and e:

cck ch s sh t-s €
e: ih iy er ax ah eh ey uw ay ow y-uw oy aa €

To produce an alignment for each word in the training set, we take this allowables
list for all the letters, and for each word in the training set, we find all alignments be-
tween the pronunciation and the spelling that conform to the allowables list. From this
large list of alignments, we compute, by summing over all alignments for all words, the
total count for each letter being aligned to each phone (or multi-phone or €). From these
counts we can normalize to get for each phone p; and letter /; a probability P(p;|l;):

count(pi, lj)

count(l;) ®.13)

P(pillj) =

We can now take these probabilities and realign the letters to the phones, using

the Viterbi algorithm to produce the best (Viterbi) alignment for each word, where

the probability of each alignment is just the product of all the individual phone/letter
alignments. The result is a single good alignment A for each training pair (P,L).

Choosing the Best Phone String for the Test Set

Given a new word w, we now need to map its letters into a phone string. We’ll train
a machine learning classifier on the aligned training set. The classifier will look at a
letter of the word and generate the most probable phone. Obviously, we can do a better
job of predicting the phone if we look at a window of surrounding letters; for example,
consider the letter a. In the word cat, the a is pronounced AE. But in our word cake,a
is pronounced EY because cake has a final e; thus, knowing whether there isafinaleis
a useful feature. Typically, we look at the k previous letters and the k following letters.

Another useful feature would be the correct identity of the previous phone. Know-
ing this would allow us to get some phonotactic information into our probability model.
Of course, we can’t know the true identity of the previous phone, but we can approxi-
mate this by looking at the previous phone that was predicted by our model. To do this, -
we can run our classifier left to right, generating phones one by one. .

In summary, in the most common classifier model, the probability of each phone i -
is estimated from a window of k previous and k following letters, as well as the mos
recent k phones that were previously produced.

Section 8.2. Phonetic Analysis 261

Liaison

Figure 8.7 shows a sketch of this left-to-right process, indicating the features that
the classifier would use to choose a phone for the letter s in the word Jurafsky. We
can integrate stress prediction into phone prediction by augmenting our set of phones
with stress information, for example having two copies of each vowel (e.g., AE and
AE1) or even the three levels of stress AEQ, AE1, and AE2 used in the CMU lexicon.
Other useful features include the part-of-speech tag of the word (most part-of-speech
taggers provide an estimate of the part-of-speech tag even for unknown words) and
facts such as whether the previous vowel was stressed or even using classes of letters
(corresponding roughly to consonants, vowels, liquids, and so on).

For some languages, we also need to know features about the following word. For
example, French has a phenomenon called liaison, in which the realization of the final
phone of some words depends on whether there is a next word and whether that word
starts with a consonant or a vowel. For example, the French word six can be pronounced
[sis] (in j'en veux six ‘I want six’), [siz] (six enfants ‘six children’), [si] (six filles ‘six
girls’).

Finally, most synthesis systems build two separate grapheme-to-phoneme classi-
fiers, one for unknown personal names, and one for other unknown words. For pro-
nouncing personal names it turns out to be helpful to use additional features that in-
dicate which foreign language the names originally came from. Such features could
be the output of a foreign-language classifier based on letter sequences (different lan-
guages have characteristic letter N-gram sequences).

Y #|#|3ju|rlalf]s|kly|#|#]}

Sl

b lieq laz lng
N
g2p

1 _Classifier F

Pi3 Pi2 Piq |

é JH| _ |AXR|AE1| F | ? ?

QTR M) The left-to-right process of converting graphemes to phonemes, showing the deci-
sion for the letter s. The features are shown in shading, using a context window k = 3; real TTS
systems use window sizes of 5 or larger.

Decision trees and logistic regression are conditional classifiers, computing the
phoneme string that has the highest conditional probability given the grapheme se-
quence. More recent grapheme-to-phoneme conversion makes use of a joint classifier
in which the hidden state is a combination of phone and grapheme called a graphone;
see the Historical Notes section at the end of the chapter for references.

262 Chapter 8.

Speech Synthesis

8.3 Prosodic Analysis

Prosody

Suprasegmental

Prosodic phrasing

b Intonation phrase

ol J Intermediate
v phrase

The final stage of linguistic analysis is prosodic analysis. In poetry, the word prosody
refers to the study of the metrical structure of verse. In linguistics and language pro-
cessing, however, we use the term prosody to mean the study of the intonationa]
and rhythmic aspects of language. More technically, prosody has been defined by
Ladd (1996) as the “use of suprasegmental features to convey sentence-level pragmatic
meanings”. The term suprasegmental means above and beyond the level of the seg-
ment or phone. The term refers especially to the uses of acoustic features like F0,
duration, and energy independently of the phone string.

By sentence-level pragmatic meaning, Ladd is referring to a number of kinds
of meaning that have to do with the relation between a sentence and its discourse
or external context. For example, prosody can be used to mark discourse structure
or function, like the difference between statements and questions, or the way that a
conversation is structured into segments or subdialogs. Prosody is also used to mark
saliency, such as indicating that a particular word or phrase is important or salient. Fi-
nally, prosody is heavily used for affective and emotional meaning, such as expressing
happiness, surprise, or anger.

In the next sections we introduce the three aspects of prosody, each of which is
important for speech synthesis: prosodic structure, prosodic prominence, and tune.
Prosodic analysis generally proceeds in two parts. First, we compute an abstract repre-
sentation of the prosodic structure, prominence, and tune of the text. For unit selection
synthesis, this is all we need to do in the text analysis component. For diphone and
HMM synthesis, we have one further step, which is to predict duration and F0 values
from these prosodic structures.

8.3.1 Prosodic Structure

Spoken sentences have prosodic structure in the sense that some words seem to group
naturally together and some words seem to have a noticeable break or disjuncture
between them. Prosodic structure is often described in terms of prosodic phrasing,
meaning that an utterance has a prosodic phrase structure in a similar way to it having
a syntactic phrase structure. For example, in the sentence I wanted to go to London, but
could only get tickets for France there seem to be two main intonation phrases, their
boundary occurring at the comma. Furthermore, in the first phrase, there seems to be
another set of lesser prosodic phrase boundaries (often called intermediate phrases)
that split up the words as I wanted | to go | to London.

Prosodic phrasing has many implications for speech synthesis; the final vowel of
a phrase is longer than usual, we often insert a pause after an intonation phrases, and,
as we discuss in Section 8.3.6, there is often a slight drop in FO from the beginning of
an intonation phrase to its end, and FO then resets at the beginning of a new intonation
phrase.

Practical phrase boundary prediction is generally treated as a binary classification
task, where we are given a word and we have to decide whether to put a prosodic‘».;
boundary after it. A simple model for boundary prediction can be based on determinis-

Section 8.3. Prosodic Analysis 263

. Prominence

~Pitch accent

tic rules. A very high precision rule is the one we saw for sentence segmentation: insert
a boundary after punctuation. Another commonly used rule inserts a phrase boundary
before a function word following a content word.

More sophisticated models are based on machine learning classifiers. To create
a training set for classifiers, we first choose a corpus and then mark every prosodic
boundary in the corpus. One way to do this prosodic boundary labeling is to use an
intonational model like ToBI or Tilt (see Section 8.3.4) and have human labelers listen
to speech and label the transcript with the boundary events defined by the theory. Be-
cause prosodic labeling is extremely time-consuming, however, a text-only alternative
is often used. In this method, a human labeler looks only at the text of the training
corpus, ignoring the speech. The labeler marks any juncture between words at which a
prosodic boundary might legitimately occur if the utterance were spoken.

Given a labeled training corpus, we can train a classifier to make a binary (boundary
vs. no boundary) decision at every juncture between words (Wang and Hirschberg,
1992; Ostendorf and Veilleux, 1994; Taylor and Black, 1998).

Features that are commonly used in classification include the following:

e Length features: Phrases tend to be of roughly equal length, so we can use vari-
ous features that hint at phrase length (Bachenko and Fitzpatrick, 1990; Grosjean
et al., 1979; Gee and Grosjean, 1983).

— The total number of words and syllables in utterance

— The distance of the juncture from the beginning and end of the sentence (in
words or syllables)

— The distance in words from the last punctuation mark
e Neighboring part of speech and punctuation:

— The part-of-speech tags for a window of words around the juncture. Gen-
erally, the two words before and after the juncture are used.
— The type of following punctuation

There is also a correlation between prosodic structure and syntactic structure
(Price et al., 1991). Thus, robust parsers like Collins (1997) can be used to label
the sentence with rough syntactic information, from which we can extract syntactic
features such as the size of the biggest syntactic phrase that ends with this word (Os-
tendorf and Veilleux, 1994; Koehn et al., 2000). We will introduce syntactic structure
and parsing in Chapters 12-14.

8.3.2 Prosodic Prominence

In any spoken utterance, some words sound more prominent than others. Prominent
words are perceptually more salient to the listener; speakers make a word more salient
in English by saying it louder, saying it slower (so it has a longer duration), or by
varying FO during the word, making it higher or more variable.

We generally capture the core notion of prominence by associating a linguistic
marker with prominent words, a marker called pitch accent. Words that are prominent
are said to bear (be associated with) a pitch accent. Pitch accent is thus part of the
phonological description of a word in context in a spoken utterance.

Tﬁrmm"’!’ |
1 I

264 Chapter 8.

Speech Synthesis

Nuclear accent

of-idf

Pitch accent is related to stress, which we discussed in Chapter 7. The stresseq
syllable of a word is where pitch accent is realized. In other words, if a speaker decideg
to highlight a word by giving it a pitch accent, the accent will appear on the stressed
syllable of the word. The following example shows accented words in capital letters,
with the stressed syllable bearing the accent (the louder, longer syllable) in boldface:

(8.14) I'm a little SURPRISED to hear it CHARACTERIZED as UPBEAT.

We generally need more fine-grained distinctions than just a binary distinction be-
tween accented and unaccented words. For example, the last accent in a phrase gener-
ally is perceived as being more prominent than the other accents. This prominent last
accent is called the nuclear accent. Emphatic accents are generally used for semantic
purposes, for example, to indicate that a word is the semantic focus of the sentence (see
Chapter 21) or that a word is contrastive or otherwise important in some way. Such em-
phatic words are often written IN CAPITAL LETTERS or with **stars** around them
in SMS or email or Alice in Wonderland; here’s an example from the latter:

(8.15) “I'know SOMETHING interesting is sure to happen,” she said to herself.

Some words can also be less prominent than usual, such as function words, which
are often phonetically very reduced (see Chapter 7). Accents can also differ according
to the tune associated with them. Accents with particularly high pitch, for example,
have different functions than those with particularly low pitch; we show how this is
modeled in the ToBI model in Section 8.3.4.

Ignoring tune for the moment, we can summarize by saying that speech synthesis
systems can use as many as four levels of prominence: emphatic accent, pitch accent,
unaccented, and reduced. In practice, however, many implemented systems make do
with a subset of only two or three of these levels.

With two levels, pitch accent prediction is a binary classification task, for which
we must decide whether a given word is accented or not. Since in general, informative
words (content words, and especially those that are new or unexpected) tend to bear
accent (Ladd, 1996; Bolinger, 1972), the simplest accent prediction system is to just
accent all content words and no function words.

Better models might seem to require sophisticated semantic knowledge, for exam-
ple, to understand if a word is new or old in the discourse, whether it is being used
contrastively, and exactly how much new information a word contains, and such in-
formation was indeed used in early systems (Hirschberg, 1993). But Hirschberg and
others showed better prediction by using simple, robust features that correlate with
these sophisticated semantics.

For example, the fact that new or unpredictable information tends to be accented
can be modeled with robust features like N-grams or tf-idf (Pan and Hirschberg, 2000;
Pan and McKeown, 1999). The unigram probability of a word P(w;) and its bigram
probability P(w;|w;_1) both correlate with accent; the more probable a word, the less
likely it is to be accented. Similarly, an information-retrieval measure known as tf-
idf (Term-Frequency/Inverse-Document Frequency; see Chapter 23) is a useful accent -;_
predictor. Tf-idf captures the semantic importance of a word in a particular documentd,
by downgrading words that appear in many different documents in a large N-document
background corpus. One of the many versions of tf-idf can be expressed formally as

Section 8.3. Prosodic Analysis 265

Accent ratio

Clash
Lapse

Tune

follows, assuming ¢ f; ; is the frequency of w; in the document d j and n; is the total
number of documents in the corpus that contain w;:

N
idf; = log (—)
n;

tf—idfiyj == tfi’j x 1df; (8.16)

For words that have been seen enough times in a training set, we can use the accent
ratio feature, which models a word’s individual probability of being accented. The ac-
cent ratio of a word is just the probability of the word being accented (if this probability
is significantly different from 0.5, and is 0.5 otherwise). More formally,

k .
| k if B(k,N,0.5) < 0.05
AccentRatio(w) = { (1)\’5 othel(:wise

where N is the total number of times the word w occurred in the training set, k is the
number of times it was accented, and B(k,n,0.5) is the probability (under a binomial
distribution) that there are k successes in # trials if the probability of success and failure
is equal (Nenkova et al., 2007; Yuan et al., 2005).

Features like part of speech, N-grams, tf-idf, and accent ratio can then be combined
in a classifier to predict accents. While these robust features work relatively well, a
number of problems in accent prediction still remain the subject of research.

For example, it is difficult to predict which of the two words should be accented
in adjective-noun or noun-noun compounds. Some regularities do exist; for exam-
ple, adjective-noun combinations like new fruck are likely to have accent on the right
word (new TRUCK), while noun-noun compounds like 7REE surgeon are likely to have
accent on the left. But exceptions to these rules make accent prediction in noun com-
pounds quite complex. For example, the noun-noun compound APPLE cake has the
accent on the first word, while the noun-noun compound apple PIE or city HALL both
have the accent on the second word (Liberman and Sproat, 1992; Sproat, 1994, 1998a).

Another complication has to do with rhythm; in general, speakers avoid putting
accents too close together (a phenomenon known as clash) or too far apart (lapse).
Thus, city HALL and PARKING lot combine as CITY hall PARKING lot with the accent
on HALL shifting forward to CITY to avoid the clash with the accent on PARKING
(Liberman and Prince, 1977),

Some of these rhythmic constraints can be captured by using sequence modeling
methods such as the sequence classifier shown in Fig. 8.7, in which we run a classifier
left to right through a sentence, using the output of the previous word as a feature. We
can also use more sophisticated machine learning models like MEMMs (Chapter 6) or
conditional random fields (CRFs) (Gregory and Altun, 2004).

8.3.3 Tune

Two utterances with the same prominence and phrasing patterns can still differ prosod-
ically by having different tunes. The tune of an utterance is the rise and fall of its
FO over time. A very obvious example of tune is the difference between statements

266 Chapter 8.

Speech Synthesis

Question rise
Final fall

and yes-no questions in English. The same sentence can be said with a final rise in FQ
to indicate a yes-no question, or a final fall in FO to indicate a declarative intonation,
Figure 8.8 shows the FO track of the same words spoken as a question or a statement,
Note that the question rises at the end; this is often called a question rise. The falling
intonation of the statement is called a final fall. -

280,

80,

you

Pitch (Hz)

know what |

mean

Pitch (Hz)

you know what

50

0.922 0 0912
Time (s) Time (s)

0
I —
Figure 8.8

|
XXX The same text read as the statement You know what I mean (on the left) and as a question You know

what I mean? (on the right). Notice that yes-no question intonation in English has a sharp final rise in FO.

Continuation rise

ToBI

Boundary tone

It turns out that English makes wide use of tune to express meaning. Besides this
well-known rise for yes-no questions, an English phrase containing a list of nouns sep-
arated by commas often has a short rise called a continuation rise after each noun.
Other examples include the characteristic English contours for expressing contradic-
tion and expressing surprise.

The mapping between meaning and tune in English is extremely complex, and
linguistic theories of intonation like ToBI have only begun to develop sophisticated
models of this mapping. In practice, therefore, most synthesis systems just distinguish
two or three tunes, such as the continuation rise (at commas), the question rise (at
question mark if the question is a yes-no question), and a final fall otherwise.

8.3.4 More Sophisticated Models: ToBI

While current synthesis systems generally use simple models of prosody like the ones
discussed above, recent research focuses on the development of much more sophisti-
cated models. We briefly discuss the ToBI and Tilt models here.

ToBI

One of the most widely used linguistic models of prosody is the ToBI (Tone and Break
Indices) model (Silverman et al., 1992; Beckman and Hirschberg, 1994; Pierrehumbert,
1980; Pitrelli et al., 1994). ToBI is a phonological theory of intonation that models
prominence, tune, and boundaries. ToBI’s model of prominence and tunes is based or
the five pitch accents and four boundary tones shown in Fig. 8.9.

An utterance in ToBI consists of a sequence of intonational phrases, each of which
ends in one of the four boundary tones. The boundary tones represent the utteranc
final aspects of tune discussed in Section 8.3.3. Each word in the utterances can op
tionally be associated with one of the five types of pitch accents.

Each intonational phrase consists of one or more intermediate phrase. Thest
phrases can also be marked with kinds of boundary tone, including the %H high initia
boundary tone, which marks a phrase that is particularly high in the speaker’s pitct
range, as well as final phrase accents H- and L-.

Break index

Tier

Section 8.3. Prosodic Analysis 267
, Pitch Accents ‘ ‘ Boundary Tones -
H* peak accent - L-L% “final fall”: “declarative contour” of American
, . ~ English '
L* low accent L-H% continuation rise -
L*+H scoopedaccent H-H% “question rise”: cantonical yes-no questionj
; e ‘ ~ contour -
L+H* rising peak accent H?L% final level plateau (plateau because H— causes
. . upstep of following) '
H+!H* stepdown

Figure 8.9 E accent and boundary tones labels from the ToBI transcription system for
American English intonation (Beckman and Ayers, 1997; Beckman and Hirschberg, 1994).

In addition to accents and boundary tones, ToBI distinguishes four levels of phras-
ing, labeled on a separate break index tier. The largest phrasal breaks are the intona-
tional phrase (break index 4) and the intermediate phrase (break index 3), discussed
above. Break index 2 is used to mark a disjuncture or pause between words that is
smaller than an intermediate phrase, and 1 is used for normal phrase-medial word
boundaries.

Figure 8.10 shows the tone, orthographic, and phrasing tiers of a ToBI transcrip-
tion, using the Praat program. The same sentence is read with two different tunes.
In (a), the word Marianna is spoken with a high H* accent, and the sentence has the
declarative boundary tone L-L.%. In (b), the word Marianna is spoken with a low L*
accent and the yes-no question boundary tone H-H%. One goal of ToBI is to express
different meanings to the different type of accents. Here, the L* accent adds a meaning
of surprise to the sentence (i.e., with a connotation like ‘Are you really saying it was
Marianna?’) (Hirschberg and Pierrehumbert, 1986; Steedman, 2007).

(a) (b)
o s +
% f =
PN
H /g/ <
i W _ N .
W
T
H* L-L L H-H
& | | 1
marianna made |the marmalade <Sl> marianna made |the marmalade
E i T T
1 1 1 4 1 11 4
R 1 L1 | ! [1
1.3 0 1.49
Time (s) Time (s)

WYX The same sentence read by Mary Beckman with two different intonation patterns and transcribed in
T(_)BI. (2) Shows an H* accent and the typical American English declarative final fall L-L%. (b) Shows the L* accent,
With the typical American English yes-no question rise H-H%.

ToBI models have been proposed for many languages (Jun, 2005), such as the
J_TOBI system for Japanese (Venditti, 2005).

268 Chapter 8.

Speech Synthesis

Tilt

Other Intonation models

The Tilt model (Taylor, 2000) resembles ToBI in that it uses sequences of intona-
tional events like accents and boundary tones. But Tilt does not use ToBI-style discrete
phonemic classes for accents. Instead, each event is modeled by continuous parameters
that represent the FO shape of the accent. Instead of giving each event a category label,
as in ToBI, each Tilt prosodic event is characterized by a set of three acoustic parame-
ters: the duration, the amplitude, and the tilt parameter. These acoustic parameters are
trained on a corpus that has been hand-labeled for pitch accents (a) and boundary tones
(b). The human labeling specifies the syllable that bears the accent or tone; the acous-
tic parameters are then trained automatically from the wavefile. Figure 8.11 shows a

sample of a Tilt representation.

—
4 \ 4 \\ /’- \
AN VAN AR
h \ J \ I' AN
\1’1 \.:,I \.:’l \(
1)] 1
v v v v
a a a b
:] ! !
1) 1 1
/ H ! !
S S SS S S S S SS S S

BTICEAl] Schematic view of events in the Tilt model (Taylor, 2000). Each pitch accent (a
and boundary tone (b) is aligned with a syllable nucleus s.

Each accent in Tilt is viewed as having a (possibly zero) rise component up f
peak, followed by a (possible zero) fall component. An automatic accent detector find
the start, peak, and end-point of each accent in the wavefile, all of which determine the
duration and amplitude of the rise and fall components. The tilt parameter is an abstrac
description of the FO slope of an event, calculated by comparison of the relative size
of the rise and fall for an event. A tilt value of 1.0 indicates a rise, tilt of -1.0 a fall, (
equal rise and fall, -0.5 is an accent with a rise and a larger fall, and so on:

tiltamp + tilt g, r
2
|Arisel — 1Afan1| | Prise — Dfall .17
|Arisel + |Afanl ~ Prise + Dfall
See the Historical Notes section at the end of the chapter for pointers to other inte
national models.

tilt =

8.3.5 Computing Duration from Prosodic Labels

The results of the text analysis processes described so far is a string of phoneme!
annotated with words with pitch accent marked on relevant words, and appropriat
boundary tones marked. For the unit selection synthesis approaches that we describ
in Section 8.5, this is a sufficient output from the text analysis component.

Target point

Section 8.3. Prosodic Analysis 269

For diphone synthesis, as well as other approaches like formant synthesis, we also
need to specify the duration and the FO values of each segment.

Phones vary quite a bit in duration. Some of the duration is inherent to the identity
of the phone itself. Vowels, for example, are generally much longer than consonants; in
the Switchboard corpus of telephone speech, the phone [aa] averages 118 milliseconds,
and [d] averages 68 milliseconds. But phone duration is also affected by a wide variety
of contextual factors, which can be modeled by rule-based or statistical methods.

The most well-known of the rule-based methods is the method of Klatt (1979),
which uses rules to model how the average oOr ‘context-neutral’ duration of a phone d
is lengthened or shortened by context, while staying above a minimum duration dpyin-
Each Klatt rule 18 associated with a duration multiplicative factor; some examples:

Prepasual lengthening: the vowel or syllabic consonant in the syllable before a pause
' ; ~ islengthened by 1.4. ' ~ .

Non-phrase-final shortening: segments not phrase-final are shortened by 0.6. Phrase-final
- postvocalic liquids and nasals are lengthened by 1.4.

Unstressed shortening: unstressed segments are more compressible, so their mini-
. \ mum duration dpyip 1S halved, and they are shortened by .7
» , for most phone types. . , ~
Lengthening for accent: avowel which bears accent is Jengthened by 1.4.
Shortening in clusters: @ consonant followed by a consonant is shortened by 05.
Pre-voiceless shortening: vowels are shortened before a voiceless plosive by 0.7.

Given the N factor weights f, the Klatt formula for the duration of a phone is

N
d = dyyin + [[/i (d = dmin) (8.18)
i=1

More recent machine learning systems use the Klatt hand-written rules as the basis
for defining features, for example, using features such as the following:

identity of the left and right context phone

o lexical stress and accent values of current phone
e position in syllable, word, phrase

e following pause

We can then train machine learning classifiers like decision trees or the sum-of-
products model (van Santen, 1994, 1997, 1998), to combine the features to predict the
final duration of the segment.

8.3.6 Computing F0 from Prosodic Labels

For diphone, articulatory, HMM, and formant synthesis we also need to specify the FO
values of each segment. For the tone sequence models like ToBI or Tilt, we can do FO
generation in two stages. We first specify FO target points for each pitch accent and
boundary tone and then create the FO contour for the whole sentence by interpolating
among these targets (Anderson et al., 1984).

To specify a target point we must first describe what it is (the FO value) and when
it occurs (the exact time at which this peak or trough occurs in the syllable). The FO

P—-

270 Chapter 8.

Speech Synthesis

Pitch range

Baseline
Topline

Reference line

Alignment

Declination

Downstep

values of the target points are generally not specified in absolute terms of hertz. Instead,
they are defined relative to pitch range. A speaker’s pitch range is the range between
the lowest frequency in a particular utterance (the baseline frequency) and the highest
frequency in the utterance (the topline). In some models, target points are specified
relative to a line in between called the reference line.

For example, we might write a rule specifying that the very beginning of an utter-
ance have a target point of 50% (halfway between the baseline and the topline). In the
rule-based system of Jilka et al. (1999), the target point for an H* accent is at 100%
(the topline) and for an L* accent at 0% (at the baseline). L+H* accents have two target
points, at 20% and 100%. Final boundary tones H-H% and L-L.% are extra high and
extra low at 120% and -20% respectively.

Second, we must also specify exactly where in the accented syllable the targets
apply; this is known as accent alignment. In the rule-based system of Jilka et al.
(1999), again, H* accents are aligned 60% of the way through the voiced part of the
accent syllable (although IP-initial accents are aligned somewhat later in the syllable,
and IP-final accents are aligned somewhat earlier).

An alternative to writing these rules by hand is to automatically learn the mapping
from pitch accent sequence to FO value. Black and Hunt (1996), for example, used
linear regression to assign target values to each syllable. For each syllable with a pitch
accent or boundary tone, they predicted three target values, at the beginning, middle,
and end of the syllable. They trained three separate linear regression models, one for
each of the three positions in the syllable. Features included the following:

accent type on the current syllable, two previous and two following syllables
lexical stress of this syllable and surrounding syllables

number of syllables to start of phrase and to end of phrase

number of accented syllables to end of phrase

Such machine learning models require a training set that is labeled for accent; &
number of such prosodically labeled corpora exist, although it is not clear how well
these models generalize to unseen corpora.

Finally, FO computation models must model the fact that pitch tends to decline
through a sentence; this subtle drop in pitch across an utterance is called declination
an example is shown in Fig. 8.12.

400

Pitch (Hz)
/
(

10 e S
0 1.81392
Time (s)

FO declination in the sentence “I was pretty goofy for about 24 hours afterwards”

The exact nature of declination is a subject of much research; some models trea
it by allowing the baseline (or both baseline and topline) to decrease slowly over the
utterance. In ToBI-like models, this downdrift in FO is modeled by two separate compo
nents; in addition to declination, certain high tones are marked as carrying downstep

Section 8.3. Prosodic Analysis 271

Each downstepped high accent causes the pitch range to be compressed, resulting in a
lowered topline for each such accent.

8.3.7 Final Result of Text Analysis: Internal Representation

The final output of text analysis is the internal representation of the input text sen-
tence. For unit selection synthesis, the internal representation can be as simple as a
phone string together with indications of prosodic boundaries and prominent syllables,
as shown in Fig. 8.1 on page 250. For diphone synthesis as well as non-concatenative
synthesis algorithms, the internal representation must also include a duration and an FO
value for each phone. '

Figure 8.13 shows some sample TTS output from the Festival (Black et al., 1999)
diphone speech synthesis system for the sentence “Do you really want 1o see all of
it?”. This output, together with the FO values shown in Fig. 8.14 would be the input to
the waveform synthesis component described in Section 8.4. The durations here are
computed by a CART-style decision tree (Riley, 1992).

H* L* L-H%

do you really want to see all of it

d| uw| y|uw ¢l ih| 1] iy | w| aa] n| t| t}ax s| iy [ao|1 |ah| v| ih}t
110| 110| 50| 50 | 75| 64 57\ g2 | 57| 50| 72| 41| 43| 47| 54| 130 |76 90 | 44| 62| 46| 220

TNkl Output of the Festival (Black et al., 1999) generator for the sentence “Do you really want to see all of
if?”, together with the FO contour shown in Fig. 8.14. (Figure thanks to Paul Taylor.)

do you really want to see all of it J

TRl The FO contour for the sample sentence generated by the Festival synthesis system
in Fig. 8.13, thanks to Paul Taylor.

As was suggested above, determining the proper prosodic pattern for a sentence
is difficult, because we need real-world knowledge and semantic information to know
which syllables to accent and which tune to apply. This sort of information is diffi-
cult to extract from the text; hence, prosody modules often aim to produce a “neutral
declarative” version of the input text and assume the sentence should be spoken in a
default way with no reference to discourse history or real-world events. This is one of
the main reasons why intonation in TTS often sounds wooden.

———f—

272 Chapter 8.

Speech Synthesis

8.4 Diphone Waveform Synthesis

Diphone

Coarticulation

We are now ready to see how the internal representation can be turned into a waveform,
We present two kinds of concatentative synthesis: diphone synthesis in this section,
and unit selection synthesis in the next section.

Recall that for diphone synthesis, our internal representation is as shown in Fig. 8.13
and Fig. 8.14 and consists of a list of phones, each phone associated with a duration
and a set of FO targets.

The diphone concatenative synthesis model generates a waveform from a sequence
of phones by selecting and concatenating units from a prerecorded database of di-
phones. A diphone is a phone-like unit going from roughly the middle of one phone to
the middle of the following phone. Diphone concatenative synthesis can be character-
ized by the following steps:

Training:
1. Record a single speaker saying an example of each diphone.
2. Cut each diphone from the speech and store all diphones in a database.
Synthesis:
1. Take from the database a sequence of diphones that corresponds to the
desired phone sequence.
2 Concatenate the diphones, with slight signal processing at the boundaries.

3. Use signal processing to change the prosody (f0, duration) of the diphone
sequence to the desired prosody.

We tend to use diphones rather than phones for concatenative synthesis because
of the phenomenon of coarticulation. In Chapter 7 we defined coarticulation as the
movement of articulators to anticipate the next sound or perseverating movement from
the last sound. Because of coarticulation, each phone differs slightly depending on the
previous and following phone. Thus if we just concatenated phones we would have
very large discontinuities at the boundaries.

In a diphone, we model this coarticulation by including the transition to the next
phone inside the unit. The diphone [w-eh], for example, includes the transition from
the [w] phone to the [eh] phone. Because a diphone is defined from the middle of one
phone to the middle of the next, when we concatenate the diphones, we are concatenat-
ing the middle of phones, and the middle of phones tends to be less influenced by the
context. Figure 8.15 shows the intuition that the beginning and end of the vowel [eh
have much more movement than the center.

8.4.1 Steps for Building a Diphone Database

Building a diphone database requires Six steps:

1. Create a diphone inventory.
2. Recruit a speaker.
3. Create a text for the speaker to read for each diphone.

Voice talent

Voice

Section 8.4. Diphone Waveform Synthesis 273

Time (s)
The vowel [eh] in different surrounding contexts, in the words wed and Ben.

Notice the differences in the second formants (F2) at the beginning and end of the [eh], but
the relatively steady state portion in the middle at the center mark.

4. Record the speaker reading each diphone.
5. Segment, label, and pitch-mark the diphones.
6. BExcise the diphones.

What is the inventory of diphones that we need for a system? If we have 43 phones
(like the AT&T system of Olive et al. (1998)), there are 432 = 1849 hypothetically
possible diphone combinations. Not all of these diphones can actually occur. For
example, English phonotactic constraints rule out some combinations; phones like
[h], [y], and [w] can only occur before vowels. In addition, some diphone systems
don’t bother storing diphones if there is no possible coarticulation between the phones,
such as across the silence between successive voiceless Stops. The 43-phone system
of Olive et al. (1998) thus has only 1162 diphones rather than the 1849 hypothetically
possible set.

Next, we recruit our speaker, often called a voice talent. The database of diphones
for this speaker is called a voice; commercial systems often have multiple voices, such
as one male and one female voice.

We’ll now create a text for the voice talent to say, and record each diphone. The
most important thing in recording diphones 1s to keep them as consistent as possible;
if possible, they should have constant pitch, energy, and duration, so that they are easy
to paste together without noticeable breaks. We promote consistency by enclosing
each diphone to be recorded in a carrier phrase. By surrounding the diphone with
other phones, we keep utterance-final lengthening ot initial phone effects from making
any diphone louder or quieter than the others. We’ll need different carrier phrases for
consonant-vowel, vowel-consonant, phone-silence, and silence-phone sequences. For
example, a consonant vowel sequence like [b aa] or [b ae] could be embedded between
the syllables [t aa] and [m aa]:

pause t aa b aamaa pause
pause t aa b ae maa pause
pause taab eh m aa pause

I —=

274 Chapter 8.

Speech Synthesis

Forced alignment

Optimal coupling

Click

Pitch-synchronous

TD-PSOLA

If we have an earlier synthesizer voice lying around, we can use that voice to read
the prompts out loud and have our voice talent repeat after the prompts. This is another
way to keep the pronunciation of each diphone consistent. It is also important to use a
high-quality microphone and a quiet room or, better, a sound booth.

Once we have recorded the speech, we need to label and segment the two phones
that make up each diphone, usually by running a speech recognizer in Forced align-
ment mode. In forced alignment mode, a speech recognition is told exactly what the
phone sequence is; its job is just to find the exact phone boundaries in the waveform.
Speech recognizers are not completely accurate at finding phone boundaries, so usually
the automatic phone segmentation is hand-corrected.

We now have the two phones (for example, [b aa]) with hand-corrected boundaries.
There are two ways we can create the /b-aa/ diphone for the database. One method is to
use rules to decide how far into the phone to place the diphone boundary. For example,
for stops, we place the diphone boundary 30% of the way into the phone. For most
other phones, we place the diphone boundary 50% into the phone.

A more sophisticated way to find diphone boundaries is to store all of both phones
and wait to excise the diphones until we are know what phone we are about to con-
catenate with. In this method, known as optimal coupling, we take the two (complete,
uncut) diphones we need to concatenate and check every possible cutting point for each
diphones, choosing the two cutting points that would make the final frame of the first
diphone acoustically most similar to the end frame of the next diphone (Taylor and
Isard, 1991; Conkie and Isard, 1996). Acoustic similarity can be measured by cepstral
similarity, as defined in Section 9.3.

8.4.2 Diphone Concatenation and TD-PSOLA for Prosody

We are now ready to see the remaining steps for synthesizing an individual utterance
Assume that we have completed text analysis for the utterance, have arrived at a se
quence of diphones and prosodic targets, and have also grabbed the appropriate s
quence of diphones from the diphone database. Next, we need to concatenate the
diphones and then adjust the prosody (pitch, energy, and duration) of the diphone se
quence to match the prosodic requirements from the intermediate representation.

Given two diphones, what do we need to do to concatenate them successfully’
If the waveforms of the two diphones edges across the juncture are very different, ¢
perceptible click will result. Thus, we need to apply a windowing function to the
edge of both diphones so that the samples at the juncture have low or zero amplitude
Furthermore, if both diphones are voiced, we need to ensure that the two diphones ar
joined pitch-synchronously. This means that the pitch periods at the end of the firs
diphone must line up with the pitch periods at the beginning of the second diphone
otherwise, the resulting single irregular pitch period at the juncture is perceptible 2
well.

Now given our sequence of concatenated diphones, how do we modify the pitc
and duration to meet our prosodic requirements? It turns out there is a simple algoriths
for doing this, called TD-PSOLA (Time-Domain Pitch-Synchronous OverLap-and
Add).

Section 8.4. Diphone Waveform Synthesis 275

Pitch marking

Pitch tracking

Electroglotto-
graph
EGG

Laryngograph
Lx

.‘,{Qve/rlap—and-add
OLA

As we just said, a pitch-synchronous algorithm is one in which we do something
at each pitch period or epoch. For such algorithms it is important to have accurate
pitch markings: measurements of exactly where each pitch pulse or epoch occurs. An
epoch can be defined by the instant of maximum glottal pressure, or alternatively by
the instant of glottal closure. Note the distinction between pitch marking or epoch
detection and pitch tracking. Pitch tracking gives the value of FO (the average cycles
per second of the glottis) at each particular point in time, averaged over a neighborhood.
Pitch marking finds the exact point in time at each vibratory cycle at which the vocal
folds reach some specific point (epoch).

Epoch labeling can be done in two ways. The traditional way, and still the most
accurate, is to use an electroglottograph or EGG (often also called a laryngograph
or Lx). An EGG is a device that straps onto the (outside of the) speaker’s neck near
the larynx and sends a small current through the Adam’s apple. A transducer detects
whether the glottis is open or closed by measuring the impedance across the vocal
folds. Some modern synthesis databases are still recorded with an EGG. The problem
with using an EGG is that it must be attached to the speaker while he or she is recording
the database. Although an EGG isn’t particularly invasive, it is still annoying, and the
EGG must be used during recording; it can’t be used to pitch-mark speech that has
already been collected. Modern epoch detectors are now approaching such a level of
accuracy that EGGs are no longer used in most commercial TTS engines. Algorithms
for epoch detection include Brookes and Loke (1999), and Veldhuis (2000).

Given an epoch-labeled corpus, the intuition of TD-PSOLA is that we can mod-
ify the pitch and duration of a waveform by extracting a frame for each pitch period
(windowed so that the frame doesn’t have sharp edges) and then recombining these
frames in various ways by simply overlapping and adding the windowed pitch period
frames (we introduce the idea of windows in Section 9.3.2). The idea that we modify
a signal by extracting frames, manipulating them in some way., and then recombining
them by adding up the overlapped signals is called the overlap-and-add or OLA algo-
rithm; TD-PSOLA is a special case of overlap-and-add in which the frames are pitch
synchronous and the whole process takes place in the time domain.

For example, to assign a specific duration to a diphone, we might want to lengthen
the recorded master diphone. To lengthen a signal with TD-PSOLA, we simply insert
extra copies of some of the pitch-synchronous frames, essentially duplicating a piece
of the signal. Figure 8.16 shows the intuition.

TD-PSOLA can also be used to change the FO value of a recorded diphone to give
a higher or lower value. To increase the FO, we extract each pitch-synchronous frame
from the original recorded diphone signal, place the frames closer together (overlap-
ping them), with the amount of overlap determined by the desired period and hence
frequency, and then add up the overlapping signals to produce the final signal. But
note that by moving all the frames closer together, we make the signal shorter in time!
Thus to change the pitch while holding the duration constant, we need to add duplicate
frames.

Figure 8.17 shows the intuition; in this figure we have explicitly shown the ex-
tracted pitch-synchronous frames that are overlapped and added; note that the frames
moved closer together (increasing the pitch) while extra frames have been added to
hold the duration constant.

276 Chapter 8. Speech Synthesis
A B N C N D N E N F ~
v v Y Y “a “a ™%
A B B Cc D E F

G AL] TD-PSOLA for duration modification. Individual pitch-synchronous frames car

be duplicated to lengthen the signal (as shown here), or deleted to shorten the signal.

8.5 Unit Selection (Waveform) Synthesis

Unit selection
synthesis

Diphone waveform synthesis suffers from two main problems. First, the stored di
phone database must be modified by signal process methods like PSOLA to product
the desired prosody. Any kind of signal processing of the stored speech leaves artifact
in the speech that can make the speech sound unnatural. Second, diphone synthesi:
captures only the coarticulation due to a single neighboring phone. But there are man;
more global effects on phonetic realization, including more distant phones, syllabl
structure, the stress patterns of nearby phones, and even word-level effects.

For this reason, modern commercial synthesizers are based on a generalization 0
diphone synthesis called unit selection synthesis. Like diphone synthesis, unit selec
tion synthesis is a kind of concatenative synthesis algorithm. The word unit means an
stored piece of speech that is concatenated together to form an output. The intuition 0
unit selection synthesis is that we can store units of different sizes, which can be muc]
larger that diphones. Unit selection thus differs from classic diphone synthesis in tW
ways:

1. In diphone synthesis, the database stores one copy of each diphone; in unit ¢

lection, the database is many hours long, with many copies of each diphone.

2. In diphone synthesis, the prosody of the units is modified by PSOLA or simila
algorithms; in unit selection no (or minimal) signal processing is applied to th
concatenated units.

The strengths of unit selection are due to the large unit database. In a sufficientl

large database, entire words or phrases of the utterance we want to synthesize M
already be present in the database, resulting in an extremely natural waveform for thes

Section 8.5. Unit Selection (Waveform) Synthesis 277

1 2 3 4 5
!
1 !
1 1
1 |
v |
|
1
|
1
:
|
v
1
1
.'
1
1
!
1 P
I e
1 e
v o
1 2 3 4 5 6 7 8

TD-PSOLA for pitch (FO) modification. To increase the pitch, we extract the
individual pitch-synchronous frames, Hanning-window them, move them closer together and
then add them up. To decrease the pitch, we move the frames further apart. Increasing the pitch
will result in a shorter signal (since the frames are closer together), so we also need to duplicate
frames if we want to change the pitch while holding the duration constant.

words or phrases. Thus we implicitly create larger units by selecting diphones that are
consecutive in the database. In addition, in cases in which we can’t find a large chunk
and have to back off to individual diphones, many copies of each diphone make it more
likely that we will find one that will fit in naturally.

The architecture of unit selection can be summarized as follows. We are given
a large database of units; let’s assume these are diphones (although it’s also possible
to do unit selection with other kinds of units such as half-phones, syllables, or half-
syllables). We are also given a characterization of the target ‘internal representation’,
that is, a phone string together with features such as stress values, word identity, FO
information, as described in Fig. 8.1 on page 250.

The goal of the synthesizer is to select from the database the best sequence of
diphone units that corresponds to the target representation. What do we mean by the
“best” sequence? Intuitively, the best sequence would be one in which

g!!!l..-IlllIIlIIIllIIlIIIIII------T---,

278 Chapter 8.

Speech Synthesis

Target cost

Join cost

e each diphone unit we select exactly meets the specifications of the target diphone
(in terms of FO, stress level, phonetic neighbors, etc.)

e each diphone unit concatenates smoothly with its neighboring units, with no
perceptible break

Of course, in practice, we can’t guarantee that there will be a unit that exactly
meets our specifications, and we are unlikely to find a sequence of units in which every
single join is imperceptible. Thus, in practice, unit selection algorithms implement a
gradient version of these constraints, and attempt to find the sequence of unit that at
least minimizes the target cost and the join cost:

The T and J values are expressed as costs, meaning that high values indicate bad
matches and bad joins (Hunt and Black, 1996).

Formally, then, the task of unit selection synthesis, given a sequence S of T target
specifications, is to find the sequence U of T units from the database that minimizes
the sum of these costs:

T T-1
U= arggunz T(seoue)+ > J (e, trr1) (8.19)
t=1 t=1

Let’s first define the target cost and the join cost in more detail before we turn to
the decoding and training tasks.

The target cost measures how well the unit matches the target diphone specifica-
tion. We can think of the specification for each diphone target as a feature vector; here
are three sample vectors for three target diphone specifications, using dimensions (fea-
tures) like should the syllable be stressed, and where in the intonational phrase should
the diphone come from.

/ih-t/, +stress, phrase internal, high F0, content word
/n-t/, -stress, phrase final, high FO, function word
/dh-ax/, -stress, phrase initial, low FO, word ‘the’

We’d like the distance between the target specification s and the unit to be some
function of how different the unit is on each of these dimensions from the specifica-
tion. Let’s assume that for each dimension p, we can come up with some subcost
T,(s¢[p), u;[p]). The subcost for a binary feature like stress might be 1 or 0. The sub- .
cost for a continuous feature like FO might be the difference (or log difference) between .
the specification FO and unit FO. Since some dimensions are more important to speech
perceptions than others, we’ll also want to weight each dimension. The simplest wa
to combine all these subcosts is just to assume that they are independent and additive.:
Using this model, the total target cost for a given target/unit pair is the weighted sum
over all these subcosts for each feature/dimension:

Section 8.5. Unit Selection (Waveform) Synthesis 279

P
T(Sf’”j) = ZW.DTP(St[p]’uj[pD (8.20)
p=1

The target cost is a function of the desired diphone specification and a unit from the
database. The join cost, by contrast, is a function of two units from the database. The
goal of the join cost is to be low (0) when the join is completely natural, and high when
the join would be perceptible or jarring. We meet this goal by measuring the acoustic
similarity of the edges of the two units that we will be joining. If the two units have
very similar energy, FO, and spectral features, they will probably join well. Thus as
with the target cost, we compute a join cost by summing weighted subcosts:

P
J(Uryttrg1) :prjp(ut[p]aut—i—l[p]) (8.21)
p=1

The three subcosts used in the classic Hunt and Black (1996) algorithm are the
cepstral distance at the point of concatenation, and the absolute differences in both
log power and FO. We introduce the cepstrum in Section 9.3.

In addition, if the two units #, and u; | to be concatenated were consecutive di-
phones in the unit database (i.e., they followed each other in the original utterance),
then we set the join cost to 0: J(us,u;41) = 0. This is an important feature of unit
selection synthesis since it encourages large natural sequences of units to be selected
from the database.

How do we find the best sequence of units that minimizes the sum of the target
and join costs as expressed in Eq. 8.19? The standard method is to think of the unit
selection problem as a hidden Markov model. The target units are the observed outputs,
and the units in the database are the hidden states. Our job is to find the best hidden
state sequence. We can use the Viterbi algorithm (Chapter 6) to solve this problem.
Figure 8.18 shows a sketch of the search space as well as the best (Viterbi) path that
determines the best unit sequence.

The weights for join and target costs are often set by hand because the number of
weights is small (on the order of 20) and machine learning algorithms don’t always
achieve human performance. The system designer listens to entire sentences produced
by the system and chooses values for weights that result in reasonable sounding utter-
ances. Various automatic weight-setting algorithms do exist, however. Many of these
assume we have some sort of distance function between the acoustics of two sentences,
perhaps based on cepstral distance. The method of Hunt and Black (1996), for exam-
ple, holds out a test set of sentences from the unit selection database. For each of these
test sentences, we synthesize from the word sequence a sentence waveform (using units
from the other sentences in the training database). Next we compare the acoustics of
the synthesized sentence with the acoustics of the true human sentence. We now have a
sequence of synthesized sentences, each one associated with a distance function to its
human counterpart. We then use linear regression based on these distances to set the
target cost weights so as to minimize the distance.

There are also more advanced methods of assigning both target and join costs. For
example, above we computed target costs between two units by looking at the features

280 Chapter 8.

Speech Synthesis

TARGETS

UNITS

IaTekBL] Decoding in unit selection, showing the sequence of target (specification) di.
phones for the word six and the set of possible database diphone units that we must searct
through. The best (Viterbi) path that minimizes the sum of the target and join costs is in bold.

of the two units, doing a weighted sum of feature costs, and choosing the lowest-cosi
unit. An alternative approach (which the new reader might need to come back to afte;
learning the speech recognition techniques introduced in the next chapters) is to may
the target unit into some acoustic space and then find a unit that is near the targe
in that acoustic space. The method of Donovan and Woodland (1995) and Donovar
and Bide (1998), for example, clusters all the training units by using the decision tre
algorithm of speech recognition described in Fig. 10.14 of Section 10.3. The decisior
tree is based on the same features described above, but here for each set of features, we
follow a path down the decision tree to the leaf node that contains a cluster of units tha
have those features. This cluster of units can be parameterized by a Gaussian model
just as for speech recognition, so that we can map a set of features into a probability
distribution over cepstral values and hence easily compute a distance between the targe
and a unit in the database. As for join costs, more sophisticated metrics make use 0
how perceivable a particular join might be (Wouters and Macon, 1998; Syrdal an
Conkie, 2004; Bulyko and Ostendorf, 2001).

8.6 Evaluation

Intelligibility

Quality

Speech synthesis systems are evaluated by human listeners. The development of a goo
automatic metric for synthesis evaluation, one that would eliminate the need for expen
sive and time-consuming human listening experiments, remains an open and excitin|
research topic.

The minimal evaluation metric for speech synthesis systems is intelligibility: th
ability of a human listener to correctly interpret the words and meaning of the synthe
sized utterance. A further metric is quality: an abstract measure of the naturalnest
fluency, or clarity of the speech.

Bibliographical and Historical Notes ~ 281

ironostic Rhyme
big Test

DRT

dified Rhyme
Modif Test
MRT

Carrier phrase

SUS

MOS

The most local measures of intelligibility test the ability of a listener to discriminate
between two phones. The Diagnostic Rhyme Test (DRT) (Voiers et al., 1975) tests the
intelligibility of initial consonants. It is based on 96 pairs of confusable rhyming words
differing only in a single phonetic feature, such as dense/tense or bond/pond (differing
in voicing) or mean/beat or neck/deck (differing in nasality). For each pair, listeners
hear one member of the pair and indicate which they think it is. The percentage of right
answers is then used as an intelligibility metric. The Modified Rhyme Test (MRT)
(House et al., 1965) is a similar test based on a different set of 300 words, consisting
of 50 sets of 6 words. Each 6-word set differs in either initial or final consonants (e.g.,
went, sent, bent, dent, tent, rent or bat, bad, back, bass, ban, bath). Listeners are given
a single word they must identify from a closed list of six words; the percentage of
correct identifications is again used as an intelligibility metric.

Since context effects are very important, both DRT and MRT words are embedded
in carrier phrases like the following:

Now we will say <word> again.

To test units larger than single phones, we can use semantically unpredictable
sentences (SUS) (Benoit et al., 1996). We construct such sentences by taking a simple
POS template like DET ADJ NOUN VERB DET NOUN and inserting random English
words in the slots, to produce sentences like

The unsure steaks closed the fish.

Measures of intelligibility like DRT/MRT and SUS factor out the role of context
in measuring intelligibility. While this allows for a carefully controlled measure of a
system’s intelligibility, such acontextual or semantically unpredictable sentences aren’t
a good fit to how TTS is used in commercial applications. Thus, in commercial appli-
cations instead of DRT or SUS, we generally test intelligibility in situations that mimic
the desired applications: reading addresses out loud, reading lines of news text, and so
on.

To further evaluate the quality of the synthesized utterances, we can play a sentence
for listeners and ask them to give a mean opinion score (MOS), a rating of how good
the synthesized utterances are, usually on a scale from 1-5. We can then compare
systems by comparing their MOS scores on the same sentences (using, e.g., t-tests to
test for significant differences).

If we are comparing exactly two systems (perhaps to see if a particular change
actually improved the system), we can use AB tests. In AB tests, we play the same
sentence synthesized by two different systems (an A and a B system). The human lis-
teners choose which of the two utterances they like better. We do this for 50 sentences
and compare the number of sentences preferred for each system. To avoid listener bias,
for each sentence we must present the two synthesized waveforms in random order.

Bibliographical and Historical Notes

As we noted at the beginning of the chapter, speech synthesis is one of the earliest fields
of speech and language processing. The 18th century saw a number of physical models

#

282 Chapter 8.

Speech Synthesis

of the articulation process, including the von Kempelen model mentioned above, as
well as the 1773 vowel model of Kratzenstein in Copenhagen using organ pipes.

But the modern era of speech synthesis can clearly be said to have arrived by the
early 1950s, when all three of the major paradigms of waveform synthesis — formant
synthesis, articulatory synthesis, and concatenative synthesis— had been proposed.

Concatenative synthesis seems to have been first proposed by Harris (1953) at Bell
Laboratories; he literally spliced together pieces of magnetic tape corresponding to
phones. Harris’s proposal was actually more like unit selection synthesis than diphone
synthesis, in that he proposed storing multiple copies of each phone and proposed the
use of a join cost (choosing the unit with the smoothest formant transitions with the
neighboring unit). Harris’s model was based on the phone, rather than the diphone,
resulting in problems due to coarticulation. Peterson et al. (1958) added many of the
basic ideas of unit selection synthesis, including the use of diphones, a database with
multiple copies of each diphone with differing prosody, each labeled with prosodic
features including FO, stress, and duration, and the use of join costs based on F0 and
formant distance between neighboring units. They also proposed microconcatenation
techniques such as windowing the waveforms. The Peterson et al. model was purely
theoretical, however, and concatenative synthesis was not implemented until the 1960s
and 1970s, when diphone synthesis was first implemented (Dixon and Maxey, 1968;
Olive, 1977). Later diphone systems included larger units such as consonant clusters
(Olive and Liberman, 1979). Modern unit selection, including the idea of large units
of non-uniform length and the use of a target cost, was invented by Sagisaka (1988)
Sagisaka et al. (1992). Hunt and Black (1996) formalized the model and put it in the
form in which we have presented it in this chapter in the context of the ATR CHATR
system (Black and Taylor, 1994). The idea of automatically generating synthesis unit
by clustering was first invented by Nakajima and Hamada (1988), but was developec
mainly by (Donovan, 1996) who incorporated decision tree clustering algorithms fron
speech recognition. Many unit selection innovations took place as part of the AT&]
NextGen synthesizer (Syrdal et al., 2000; Syrdal and Conkie, 2004).

We focused in this chapter on concatenative synthesis, but there are two other syn
thesis paradigms: formant synthesis, in which we try to build rules that generate arti
ficial spectra, including especially formants; and articulatory synthesis, in which w
try to directly model the physics of the vocal tract and articulatory process.

Formant synthesizers originally were inspired by attempts to mimic human speec
by generating artificial spectrograms. The Haskins Laboratories Pattern Playback Mz
chine generated a sound wave by painting spectrogram patterns on a moving tran
parent belt and using reflectance to filter the harmonics of a waveform (Cooper et al
1951); other very early formant synthesizers include those of Lawrence (1953) and Far
(1951). Perhaps the most well-known of the formant synthesizers were the Klatt for
mant synthesizer and its successor systems, including the MITalk system (Allenetal
1987) and the Klattalk software used in Digital Equipment Corporation’s DECtal
(Klatt, 1982). See Klatt (1975) for details.

Articulatory synthesizers attempt to synthesize speech by modeling the physi
of the vocal tract as an open tube. Representative models, both early and somewh
more recent include those of Stevens et al. (1953), Flanagan et al. (1975), and Fa
(1986). See Klatt (1975) and Flanagan (1972) for more details.

Graphone

Fujisaki

Intonation unit

. Tone unit

Bibliographical and Historical Notes 283

Development of the text analysis components of TTS came somewhat later, as tech-
niques were borrowed from other areas of natural language processing. The input to
early synthesis systems was not text, but rather phonemes (typed in on punched cards).
The first text-to-speech system to take text as input seems to have been the system of
Umeda and Teranishi (Umeda et al., 1968 Teranishi and Umeda, 1968; Umeda, 1976).
The system included a lexicalized parser that assigned prosodic boundaries, as well as
accent and stress; the extensions in Coker et al. (1973) added more rules, for example,
for deaccenting light verbs, and explored articulatory models as well. These early TTS
systems used a pronunciation dictionary for word pronunciations. To expand to larger
vocabularies, early formant-based TTS systems such as MITalk (Allen et al., 1987)
used letter-to-sound rules instead of a dictionary since computer memory was far too
expensive to store large dictionaries.

Modern grapheme-to-phoneme models derive from the influential early probabilis-
tic grapheme-to-phoneme model of Lucassen and Mercer (1984), which was originally
proposed in the context of speech recognition. The widespread use of such machine
learning models was delayed, however, because early anecdotal evidence suggested
that hand-written rules worked better than, for example, the neural networks of Se-
jnowski and Rosenberg (1987). The careful comparisons of Damper et al. (1999)
showed that machine learning methods were generally superior. A number of such
models make use of pronunciation by analogy (Byrd and Chodorow, 1985; Dedina and
Nusbaum, 1991; Daelemans and van den Bosch, 1997; Marchand and Damper, 2000)
or latent analogy (Bellegarda, 2005); HMMs (Taylor, 2005) have also been proposed.
The most recent work makes use of joint graphone models, in which the hidden vari-
ables are phoneme-grapheme pairs and the probabilistic model is based on joint rather
than conditional likelihood (Deligne et al., 1995; Luk and Damper, 1996 Galescu and
Allen, 2001; Bisani and Ney, 2002; Chen, 2003).

The literature on prosody is vast; another important computational model, for ex-
ample, 18 the Fujisaki model (Fujisaki and Ohno, 1997). IViE (Grabe, 2001) is an
extension of ToBI that focuses on labeling different varieties of English (Grabe et al.,
2000). There is also much debate on the units of intonational structure, including in-
tonational phrases (Beckman and Pierrehumbert, 1986), intonation units (Du Bois
et al., 1983) or tone units (Crystal, 1969), and their relation to clauses and other syn-
tactic units (Chomsky and Halle, 1968; Langendoen, 1975; Streeter, 1978; Hirschberg
and Pierrehumbert, 1986; Selkirk, 1986; Nespor and Vogel, 1986; Croft, 1995; Ladd,
1996; Ford and Thompson, 1996; Ford et al., 1996). Much recent work on speech
synthesis has focused on generating emotional speech (Cahn, 1990; Bulut et al., 2002;
Hamza et al., 2004; Eide et al., 2004; Lee et al., 2006; Schroder, 2006, among others).

One of the most exciting new paradigms for speech synthesis is HMM synthe-
sis, first proposed by Tokuda et al. (1995b) and claborated in Tokuda et al. (1995a),
Tokuda et al. (2000), and Tokuda et al. (2003). See also the textbook summary of
HMM synthesis in Taylor (2008). Huang et al. (2001) and Gibbon et al. (2000) present
more information on TTS evaluation. See also the annual speech synthesis competition
called the Blizzard Challenge (Black and Tokuda, 2005; Bennett, 2005).

Two classic text-to-speech synthesis systems are described in Allen et al. (1987)
(the MITalk system) and Sproat (1998b) (the Bell Labs system). Recent textbooks
include Dutoit (1997), Huang et al. (2001), Taylor (2008), and Alan Black’s online lec-

r—-

284 Chapter 8.

Speech Synthesis

Exercises

ture notes at http: //festvox.org/festtut/notes /festtut_toc.html,
Influential collections of papers include van Santen etal. (1997), Sagisaka et al. (1997),
Narayanan and Alwan (2004). Conference publications appear in the main speech engi-
neering conferences (INTERSPEECH, IEEE ICASSP) and the Speech Synthesis Work-
shops. Journals include Speech Communication, Computer Speech and Language, the
IEEE Transactions on Audio, Speech, and Language Processing, and the ACM Trans-
actions on Speech and Language Processing.

8.1 Implement the text normalization routine that deals with MONEY, that is, map-
ping strings of dollar amounts like $45, $320, and $4100 to words (either writing
code directly or designing an FST). If there are multiple ways to pronounce a
number you may pick your favorite way.

8.2 Implement the text normalization routine that deals with NTEL, that is, seven-
digit phone numbers like 555-1212, 555-1 300, and so on. Use a combination of
the paired and trailing unit methods of pronunciation for the last four digits.
(Again, either write code or design an FST).

8.3 Implement the text normalization routine that deals with type NDATE in Fig. 8.4.
8.4 Implement the text normalization routine that deals with type NTIME in Fig. 8.4.

8.5 (Suggested by Alan Black.) Download the free Festival speech synthesizer. Aug-
ment the lexicon to correctly pronounce the names of everyone in your class.

8.6 Download the Festival synthesizer. Using your own voice, record and train a
diphone synthesizer.

8.7 Build a phrase boundary predictor. You can use any classifier you like, and you
should implement some of the features described on page 263.

