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In these dialects rice is pronounced [r aa s]. African-American Vernacular English
(AAVE) shares many vowels with Southern American English and also has indivic-
ual words with specific pronunciations, such as [b ih d n ih s] for business and [ac &
s] for ask. For older speakers or those not from the American West or Midwest. th=
words caught and cot have different vowels ([k ao t] and [k aa t], respectively). Younz
American speakers or those from the West pronounce the two words cot and caugis
the same; the vowels [ao] and [aa] are usually not distinguished in these dialects excer:
before [r]. For speakers of some American and most non-American dialects of Englis=
(e.g., Australian English), the words Mary ([m ey r iy]), marry ([m ae r iy]), and merr
([m eh r iy]) are all pronounced differently. Many American speakers pronounce al’
three of these words identically as ([m eh r iy]).

Other sociolinguistic differences are due to register or style; a speaker might pro-
nounce the same word differently depending on the social situation or the identity of
the interlocutor. One of the most well-studied examples of style variation is the suffix
-ing (as in something), which can be pronounced [ih ng] or [ih n] (this is often writter
somethin’). Most speakers use both forms; as Labov (1966) shows, they use [ih ng’
when they are being more formal, and [ih n] when more casual. Wald and Shopen
(1981) found that men are more likely to use the non-standard form [ih n] than women.
that both men and women are more likely to use more of the standard form [ih ngl
when the addressee is a women, and that men (but not women) tend to switch to [ih n]
when they are talking with friends.

Many of these results on predicting variation rely on logistic regression on phonet-
ically transcribed corpora, a technique with a long history in the analysis of phonetic
variation (Cedergren and Sankoff, 1974), particularly with the VARBRUL and GOLD-
VARB software (Rand and Sankoff, 1990).

Finally, the detailed acoustic realization of a particular phone is very strongly influ-
enced by coarticulation with its neighboring phones. We return to these fine-grained
phonetic details in the following chapters (Section 8.4 and Section 10.3) after we in-
troduce acoustic phonetics.

7.4  Acoustic Phonetics and Signals

We begin with a brief introduction to the acoustic waveform and how it is digitized
and summarize the idea of frequency analysis and spectra. This is an extremely brief

overview; the interested reader is encouraged to consult the references at the end of the
chapter.

7.4.1 Waves

Acoustic analysis is based on the sine and cosine functions. Figure 7.12 shows a plot
of a sine wave, in particular the function

y=Axsin(2mft) (7.2)

where we have set the amplitude A to 1 and the frequency f to 10 cycles per second.
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A sine wave with a frequency of 10 Hz and an amplitude of 1.

Recall from basic mathematics that two important characteristics of a wave are its
frequency and amplitude. The frequency is the number of times a second that a wave
repeats itself, that is, the number of cycles. We usually measure frequency in cycles
per second. The signal in Fig. 7.12 repeats itself 5 times in .5 seconds, hence 10
cycles per second. Cycles per second are usually called hertz (shortened to Hz), so the
frequency in Fig. 7.12 would be described as 10 Hz. The amplitude A of a sine wave
is the maximum value on the Y axis.

The period T of the wave is defined as the time it takes for one cycle to complete,
defined as

=— 3
T 7 (7.3)

In Fig. 7.12 we can see that each cycle lasts a tenth of a second; hence T = .1

seconds.

7.4.2 Speech Sound Waves

Let’s turn from hypothetical waves to sound waves. The input to a speech recognizer,
like the input to the human ear, is a complex series of changes in air pressure. These
changes in air pressure obviously originate with the speaker and are caused by the
specific way that air passes through the glottis and out the oral or nasal cavities. We
represent sound waves by plotting the change in air pressure over time. One metaphor
which sometimes helps in understanding these graphs is that of a vertical plate block-
ing the air pressure waves (perhaps in a microphone in front of a speaker’s mouth, or
the eardrum in a hearer’s ear). The graph measures the amount of compression or rar-
efaction (uncompression) of the air molecules at this plate. Figure 7.13 shows a short
segment of a waveform taken from the Switchboard corpus of telephone speech of the
vowel [iy] from someone saying “she just had a baby”.

Let’s explore how the digital representation of the sound wave shown in Fig. 7.13
would be constructed. The first step in processing speech is to convert the analog rep-
resentations (first air pressure and then analog electric signals in a microphone) into
a digital signal. This process of analog-to-digital conversion has two steps: sam-
pling and quantization. To sample a signal, we measure its amplitude at a particular
time; the sampling rate is the number of samples taken per second. To accurately
measure a wave, we must have at least two samples in each cycle: one measuring the
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0.03875
Time (s)

WISUCHBR] A waveform of the vowel [iy] from an utterance shown later in Fig. 7.17 on page 236. The y-axis
shows the level of air pressure above and below normal atmospheric pressure. The x-axis shows time. Notice tha:
the wave repeats regularly.
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positive part of the wave and one measuring the negative part. More than two sam-
ples per cycle increases the amplitude accuracy, but fewer than two samples causes the
frequency of the wave to be completely missed. Thus, the maximum frequency wave
that can be measured is one whose frequency is half the sample rate (since every cycle
needs two samples). This maximum frequency for a given sampling rate is called the
Nyquist frequency. Most information in human speech is in frequencies below 10,000
Hz; thus, a 20,000 Hz sampling rate would be necessary for complete accuracy. But
telephone speech is filtered by the switching network, and only frequencies less than
4.000 Hz are transmitted by telephones. Thus, an 8,000 Hz sampling rate is sufficient
for telephone-bandwidth speech like the Switchboard corpus. A 16,000 Hz sampling
rate (sometimes called wideband) is often used for microphone speech.

Even an 8,000 Hz sampling rate requires 8000 amplitude measurements for each
second of speech, so it is important to store amplitude measurements efficiently. They
are usually stored as integers, either 8 bit (values from -128-127) or 16 bit (values
from -32768-32767). This process of representing real-valued numbers as integers is
called quantization because the difference between two integers acts as a minimum
granularity (a quantum size) and all values that are closer together than this quantum
size are represented identically.

Once data is quantized, it is stored in various formats. One parameter of these
formats is the sample rate and sample size discussed above; telephone speech is often
sampled at 8 kHz and stored as 8-bit samples, and microphone data is often sampled
at 16 kHz and stored as 16-bit samples. Another parameter of these formats is the
number of channels. For stereo data or for two-party conversations, we can store both
channels in the same file or we can store them in separate files. A final parameter is
individual sample storage —linearly or compressed. One common compression format
used for telephone speech is u-law (often written u-law but still pronounced mu-law).
The intuition of log compression algorithms like u-law is that human hearing is more
sensitive at small intensities than large ones; the log represents small values with more
faithfulness at the expense of more error on large values. The linear (unlogged) values
are generally referred to as linear PCM values (PCM stands for pulse code modulation,

but never mind that). Here’s the equation for compressing a linear PCM sample value
x to 8-bit u-law, (where u=255 for 8 bits):

Fla) = sgn(s)log(1+ uls|) (7.4)

log(1+ u)
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There are a number of standard file formats for storing the resulting digitized wave-
file, such as Microsoft’s .wav, Apple’s AIFF and Sun’s AU, all of which have special
headers; simple headerless “raw” files are also used. For example, the .wav format is a
subset of Microsoft’s RIFF format for multimedia files; RIFF is a general format that
series of nested chunks of data and control information. Figure 7.14

can represent a
shows a simple .wav file with a single data chunk together with its format chunk.
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ing this 44-byte header would be the data chunk.

7.4.3 Frequency and Amplitude; Pitch and Loudness

Sound waves, like all waves, can be described in terms of frequency, amplitude, and
the other characteristics that we introduced earlier for pure sine waves. In sound waves,
these are not quite as simple to measure as they were for sine waves. Let’s consider
frequency. Note in Fig. 7.13 that although not exactly a sine, the wave is nonetheless

its for each
periodic, repeating 10 times in the 38.75 milliseconds (.03875 seconds) captured in the

ently. They
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‘ figure. Thus, the frequency of this segment of the wave is 10/.03875 or 258 Hz.
integers is I Where does this periodic 258 Hz wave come from? It comes from the speed of
-~ ! vibration of the vocal folds; since the waveform in Fig. 7.13 is from the vowel [iy], it
|
|

FO

. minimum
S quantum | is voiced. Recall that voicing is caused by regular openings and closing of the vocal
| folds. When the vocal folds are open, air is pushing up through the lungs, creating a
r of these ‘ region of high pressure. When the folds are closed, there is no pressure from the lungs.
eh is ofica Thus, when the vocal folds are vibrating, we expect to see regular peaks in amplitude
n sampled ‘ of the kind we see in Fig. 7.13, each major peak corresponding to an opening of the
ot 5o The | | vocal folds. The frequency of the vocal fold vibration, or the frequency of the complex
store both | Fundamerial  wave, is called the fundamental frequency of the waveform, often abbreviated FO.
I We can plot FO over time in a pitch track. Figure 7. 15 shows the pitch track of a short

rameter is
question, “Three o’clock?” represented below the waveform. Note the rise in FO at the

|
ion format : Pitch track
 mu-law ) [ | end of the question.
g is more ’ The vertical axis in Fig. 7.13 measures the amount of air pressure variation; pres-
#ith mors | sure is force per unit area, measured in Pascals (Pa). A high value on the vertical axis
-d) values (a high amplitude) indicates that there is more air pressure at that point in time, a zero
dulation. value means there is normal (atmospheric) air pressure, and a negative value means

ple value there is lower than normal air pressure (rarefaction).
‘ In addition to this value of the amplitude at any point in time, we also often need

to know the average amplitude over some time range, to give us some idea of how
great the average displacement of air pressure is. But we can’t just take the average
of the amplitude values over a range; the positive and negative values would (mostly)
cancel out, leaving us with a number close to zero. Instead, we generally use the RMS
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Pitch track of the question “Three 0’clock?”, shown below the wavefile. Note the
rise in FO at the end of the question. Note the lack of pitch trace during the very quiet part (the
“0”” of “0’clock”; automatic pitch tracking is based on counting the pulses in the voiced regions.
and doesn’t work if there is no voicing (or insufficient sound).

(root-mean-square) amplitude, which squares each number before averaging (making
it positive), and then takes the square root at the end.

RMS amplitude? ; =

The power of the signal is related to the square of the amplitude. If the number of
samples of a sound is N, the power is

N
1
Power = Z;xl? (7.6)
=

Intensity Rather than power, we more often refer to the intensity of the sound, which nor-
malizes the power to the human auditory threshold and is measured in dB. If Py is the
auditory threshold pressure = 2 x 107> Pa, then intensity is defined as follows:

N
. 1
Intensity = 10log;g NP g xl-z 7.7
0~
i=1

Figure 7.16 shows an intensity plot for the sentence “Is it a long movie?” from the
CallHome corpus, again shown below the waveform plot.

Two important perceptual properties, pitch and loudness, are related to frequency
and intensity. The pitch of a sound is the mental sensation, or perceptual correlate, of
fundamental frequency; in general, if a sound has a higher fundamental frequency we
perceive it as having a higher pitch. We say “in general” because the relationship is not
linear, since human hearing has different acuities for different frequencies. Roughly
speaking, human pitch perception is most accurate between 100 Hz and 1000 Hz and
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JYTINRBT] Intensity plot for the sentence “Is it a long movie?”. Note the intensity peaks at
each vowel and the especially high peak for the word long.

1.1675

in this range pitch correlates linearly with frequency. Human hearing represents fre-
quencies above 1000 Hz less accurately, and above this range, pitch correlates logarith-
mically with frequency. Logarithmic representation means that the differences between
high frequencies are compressed and hence not as accurately perceived. There are var-

Mel ious psychoacoustic models of pitch perception scales. One common model is the mel
scale (Stevens et al., 1937; Stevens and Volkmann, 1940). A mel is a unit of pitch
defined such that pairs of sounds which are perceptually equidistant in pitch are sepa-
rated by an equal number of mels. The mel frequency m can be computed from the raw
acoustic frequency as follows:

_ i
m= 1127ln(1+700) (7.8)

We return to the mel scale in Chapter 9 when we introduce the MFCC representa-
tion of speech used in speech recognition.
| The loudness of a sound is the perceptual correlate of the power. So sounds with
higher amplitudes are perceived as louder, but again the relationship is not linear. First
of all, as we mentioned above when we defined u-law compression, humans have
greater resolution in the low-power range; the ear is more sensitive to small power
differences. Second, it turns out that there is a complex relationship between power,
frequency, and perceived loudness; sounds in certain frequency ranges are perceived as
being louder than those in other frequency ranges.
Various algorithms exist for automatically extracting FO. In a slight abuse of ter-
Fehevraction minology, these are called pitch extraction algorithms. The autocorrelation method
of pitch extraction, for example, correlates the signal with itself at various offsets. The
offset that gives the highest correlation gives the period of the signal. Other methods
for pitch extraction are based on the cepstral features we introduce in Chapter 9. There
are various publicly available pitch extraction toolkits; for example, an augmented au-
tocorrelation pitch tracker is provided with Praat (Boersma and Weenink, 2005).
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7.4.4 Interpretation of Phones from a Waveform

Much can be learned from a visual inspection of a waveform. For example, vowels
are pretty easy to spot. Recall that vowels are voiced; another property of vowels =
that they tend to be long and are relatively loud (as we can see in the intensity plot iz
Fig. 7.16). Length in time manifests itself directly on the x-axis, and loudness is relate=
to (the square of) amplitude on the y-axis. We saw in the previous section that voicing
is realized by regular peaks in amplitude of the kind we saw in Fig. 7.13, each major
peak corresponding to an opening of the vocal folds. Figure 7.17 shows the waveform
of the short sentence “she just had a baby”. We have labeled this waveform with worc
and phone labels. Notice that each of the six vowels in Fig. 7.17, [iyl, [ax], [ae], [ax]-
[ey], [iy], all have regular amplitude peaks indicating voicing.

Time (s)

A waveform of the sentence “She just had a baby” from the Switchboard corpus (conversation 4325).
The speaker is female, was 20 years old in 1991, which is approximately when the recording was made, and speaks
the South Midlands dialect of American English.

Spectrum

For a stop consonant, which consists of a closure followed by a release, we can
often see a period of silence or near silence followed by a slight burst of amplitude. We
can see this for both of the [b]’s in baby in Fig. 7.17.

Another phone that is often quite recognizable in a waveform is a fricative. Re-
call that fricatives, especially very strident fricatives like [sh], are made when a nar-
row channel for airflow causes noisy, turbulent air. The resulting hissy sounds have a
noisy, irregular waveform. This can be seen somewhat in Fig. 7.17; it’s even clearer in
Fig. 7.18, where we’ve magnified just the first word she.

7.4.5 Spectra and the Frequency Domain

While some broad phonetic features (such as energy, pitch, and the presence of voic-
ing, stop closures, or fricatives) can be interpreted directly from the waveform, most
computational applications such as speech recognition (as well as human auditory pro-
cessing) are based on a different representation of the sound in terms of its component
frequencies. The insight of Fourier analysis is that every complex wave can be repre-
sented as a sum of many sine waves of different frequencies. Consider the waveform
in Fig. 7.19. This waveform was created (in Praat) by summing two sine waveforms,
one of frequency 10 Hz and one of frequency 100 Hz.

We can represent these two component frequencies with a spectrum. The spectrum
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[l A more detailed view of the first word “she” extracted from the wavefile in Fig. 7.17. Notice the

ii==rence between the random noise of the fricative [sh] and the regular voicing of the vowel [iy].
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[aTaeRBE] A waveform that is the sum of two sine waveforms, one of frequency 10 Hz (note
five repetitions in the half-second window) and one of frequency 100 Hz, both of amplitude 1.

of a signal is a representation of each of its frequency components and their amplitudes.
Figure 7.20 shows the spectrum of Fig. 7.19. Frequency in Hz is on the x-axis and
amplitude on the y-axis. Note the two spikes in the figure, one at 10 Hz and one at
100 Hz. Thus, the spectrum is an alternative representation of the original waveform,
and we use the spectrum as a tool to study the component frequencies of a sound wave
at a particular time point.

Sound pressure level (dB/Hz)

. i

1 2 5 10 20 50 100 200
Frequency (Hz)

AT The spectrum of the waveform in Fig. 7.19.

Let’s look now at the frequency components of a speech waveform. Figure 7.21
shows part of the waveform for the vowel [ae] of the word had, cut out from the sen-
tence shown in Fig. 7.17.
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The waveform of part of the vowel [ae] from the word had cut out from the
waveform shown in Fig. 7.17.

Note that there is a complex wave that repeats about ten times in the figure; but thers
is also a smaller repeated wave that repeats four times for every larger pattern (notice
the four small peaks inside each repeated wave). The complex wave has a frequency of
about 234 Hz (we can figure this out since it repeats roughly 10 times in .0427 seconds.
and 10 cycles/.0427 seconds = 234 Hz).

The smaller wave then should have a frequency of roughly four times the frequencs
of the larger wave, or roughly 936 Hz. Then, if you look carefully, you can see two
little waves on the peak of many of the 936 Hz waves. The frequency of this tinies:
wave must be roughly twice that of the 936 Hz wave, hence 1872 Hz.

Figure 7.22 shows a smoothed spectrum for the waveform in Fig. 7.21, computed
with a discrete Fourier transform (DFT).

° 3

Sound pressure level (dB/Hz)
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0 1000 2000 3000 4000
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[T EP] A spectrum for the vowel [ae] from the word /ad in the waveform of She Jjust had
a baby in Fig. 7.17.

The x-axis of a spectrum shows frequency, and the y-axis shows some measure
of the magnitude of each frequency component (in decibels (dB), a logarithmic mea-
sure of amplitude that we saw earlier). Thus, Fig. 7.22 shows significant frequency
components at around 930 Hz, 1860 Hz, and 3020 Hz, along with many other lower-
magnitude frequency components. These first two components are just what we noticed
in the time domain by looking at the wave in Fig. 7.21!

Why is a spectrum useful? It turns out that these spectral peaks that are easily
visible in a spectrum are characteristic of different phones; phones have characteristic
spectral “signatures”. Just as chemical elements give off different wavelengths of light
when they burn, allowing us to detect elements in stars by looking at the spectrum of the
light, we can detect the characteristic signature of the different phones by looking at the
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spectrum of a waveform. This use of spectral information is essential to both human
and machine speech recognition. In human audition, the function of the cochlea, or
inner ear, is to compute a spectrum of the incoming waveform. Similarly, the various
kinds of acoustic features used in speech recognition as the HMM observation are all
different representations of spectral information.

Let’s look at the spectrum of different vowels. Since some vowels change over
time, we’ll use a different kind of plot called a spectrogram. While a spectrum shows
the frequency components of a wave at one point in time, a spectrogram is a way of
envisioning how the different frequencies that make up a waveform change over time.
The x-axis shows time, as it did for the waveform, but the y-axis now shows frequencies
in hertz. The darkness of a point on a spectrogram corresponds to the amplitude of the
frequency component. Very dark points have high amplitude, light points have low
amplitude. Thus, the spectrogram is a useful way of visualizing the three dimensions
(time x frequency x amplitude).

Figure 7.23 shows spectrograms of three American English vowels, [ih]. [ae]. and
[ah]. Note that each vowel has a set of dark bars at various frequency bands. slightly
different bands for each vowel. Each of these represents the same kind of spectral peak
that we saw in Fig. 7.21.

Frequency (Hz)

5 . : i o
0 2.81397
Time (s)

Spectrograms for three American English vowels, [ih], [ae], and [uh], spoken by
the first author.

Each dark bar (or spectral peak) is called a formant. As we discuss below, a for-
mant is a frequency band that is particularly amplified by the vocal tract. Since different
vowels are produced with the vocal tract in different positions, they will produce dif-
ferent kinds of amplifications or resonances. Let’s look at the first two formants, called
F1 and F2. Note that F1, the dark bar closest to the bottom, is in a different position for
the three vowels: it’s low for [ih] (centered at about 470 Hz) and somewhat higher for
[ac] and [ah] (somewhere around 800 Hz). By contrast, F2, the second dark bar from
the bottom, is highest for [ih], in the middle for [ae], and lowest for [ah].

We can see the same formants in running speech, although the reduction and coar-
ticulation processes make them somewhat harder to see. Figure 7.24 shows the spec-
trogram of “she just had a baby”, whose waveform was shown in Fig. 7.17. F1 and F2
(and also F3) are pretty clear for the [ax] of just, the [ae] of had, and the [ey] of baby.

What specific clues can spectral representations give for phone identification? First,
since different vowels have their formants at characteristic places, the spectrum can
distinguish vowels from each other. We’ve seen that [ae] in the sample waveform had
formants at 930 Hz, 1860 Hz, and 3020 Hz. Consider the vowel [iy] at the beginning
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LITEWRY] A spectrogram of the sentence “she Just had a baby” whose waveform was shown in Fig. 7.17. W=
can think of a spectrogram as a collection of spectra (time slices), like Fig. 7.22 placed end to end.

Source-filter
model

of the utterance in Fig. 7.17. The spectrum for this vowel is shown in Fig. 7.25. The
first formant of [iy] is 540 Hz, much lower than the first formant for [ae], and the
second formant (2581 Hz) is much higher than the second formant for [ae]. If you look
carefully, you can see these formants as dark bars in Fig. 7.24 just around 0.5 seconds.
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PR BT R S I TSI R N
0 1000 3000 3000
NG A smoothed (LPC) spectrum for the vowel [iy] at the start of She just had a
baby. Note that the first formant (540 Hz) is much lower than the first formant for [ae] shown in
Fig. 7.22, and the second formant (2581 Hz) is much higher than the second formant for [ae].

The location of the first two formants (called F1 and F2) plays a large role in de-
termining vowel identity, although the formants still differ from speaker to speaker.
Higher formants tend to be caused more by general characteristics of a speaker’s vocal
tract rather than by individual vowels. Formants also can be used to identify the nasal
phones [n], [m], and [ng] and the liquids [1] and [r].

7.4.6 The Source-Filter Model

Why do different vowels have different spectral signatures? As we briefly mentioned
above, the formants are caused by the resonant cavities of the mouth. The source-filter
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model is a way of explaining the acoustics of a sound by modeling how the pulses
produced by the glottis (the source) are shaped by the vocal tract (the filter).

Let’s see how this works. Whenever we have a wave such as the vibration in air

Harmonic caused by the glottal pulse, the wave also has harmonics. A harmonic is another wave
whose frequency is a multiple of the fundamental wave. Thus, for example, a 115 Hz
glottal fold vibration leads to harmonics (other waves) of 230 Hz, 345 Hz, 460 Hz, and
so on on. In general, each of these waves will be weaker, that is, will have much less
amplitude than the wave at the fundamental frequency.

1t turns out, however, that the vocal tract acts as a kind of filter or amplifier; indeed
any cavity, such as a tube, causes waves of certain frequencies to be amplified and oth-
ers to be damped. This amplification process is caused by the shape of the cavity; a
given shape will cause sounds of a certain frequency to resonate and hence be ampli-
fied. Thus, by changing the shape of the cavity, we can cause different frequencies to
be amplified.

When we produce particular vowels, we are essentially changing the shape of the
vocal tract cavity by placing the tongue and the other articulators in particular positions.
The result is that different vowels cause different harmonics to be amplified. So a wave
of the same fundamental frequency passed through different vocal tract positions will
result in different harmonics being amplified.

We can see the result of this amplification by looking at the relationship between
the shape of the vocal tract and the corresponding spectrum. Figure 7.26 shows the
vocal tract position for three vowels and a typical resulting spectrum. The formants are
places in the spectrum where the vocal tract happens to amplify particular harmonic
frequencies.

IE Phonetic Resources

A wide variety of phonetic resources can be drawn on for computational work. One

P "”;,‘:ijo“,j;‘;’; key set of resources are pronunciation dictionaries. Such on-line phonetic dictio-
naries give phonetic transcriptions for each word. Three commonly used on-line dic-
tionaries for English are the CELEX, CMUdict, and PRONLEX lexicons; for other
languages, the LDC has released pronunciation dictionaries for Egyptian Arabic, Ger-
man, Japanese, Korean, Mandarin, and Spanish. All these dictionaries can be used for
both speech recognition and synthesis work.

The CELEX dictionary (Baayen et al., 1995) is the most richly annotated of the
dictionaries. It includes all the words in the 1974 Oxford Advanced Learner’s Dictio-
nary (41,000 lemmata) and the 1978 Longman Dictionary of Contemporary English
(53,000 lemmata); in total it has pronunciations for 160,595 wordforms. Tts (British
rather than American) pronunciations are transcribed with an ASCII version of the IPA
called SAM. In addition to basic phonetic information like phone strings, syllabifica-
tion, and stress level for each syllable, each word is also annotated with morphological,
part-of-speech, syntactic, and frequency information. CELEX (as well as CMU and
PRONLEX) represent three Jevels of stress: primary Stress, secondary stress, and no
stress. For example, some of the CELEX information for the word dictionary includes




