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Motivations

» Key factors to a conversation (in human
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Model Comparison
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Model Detail

CVAE for Dialogue Generation (yellow background)

Adding Emotion Elicitation Function

augment CVAE with a latent variable e, which is used to control
the generation of a response together with the unstructured
Varlable £VAE(6’ ¢) :EQ¢(Z|C’$)Q¢(6|C’$) [logpg(:z:|z, Gy 6)]

— KL(g¢(z|c, z)||pe(z|c))
< log p(z|c),

a discriminator D is used to force the generator to produce
coherent emotions

Lattre (0) = Epz)p(e) [log gp (6 | éT(Z,e))]
Similarly, the variational encoder is reused to separate unrelated

attributes from e by forcing them to be fully captured by z. It can
be considered as another discriminator E :

Lase> (0) = Epzyp(e) [log qE (z | G- (=, e))] :

Combining, we have min Lo = Lvag + AeLAttr,e + Az LAttr 2.
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Dataset

* Reconstructed the multi-modal MEmoR dataset (Shen et al., 2020) to fit our emotion elicitation task
and conducted human evaluation to validate the usability in a single modality. (annotator agreement

of 80% accuracy (Cohen’s =0.491) )

* The reconstructed corpus has 22,732 utterances
» Split the data in training (18,943), dev (1,894), and test (1,894).

e Pretrain: we use more than 200k utterances from the Friends (Zahiri and Choi, 2017) and Open
Subtitles2 datasets



Results
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Sample generations

Context:Well, you be sure to let us know when you win the nobel prize
for boysenberry.

Golden (anticipation): Hey.

EmpDG (anticipation): yeah .

Ours (joy): Oh, what a gentleman?
Ours (trust): Wow , I really appreciate it.

Context: Aw, Amy, that was lovely. You know, this is fun. Let’s do more.
Someone else say something wonderful about me.

Golden (joy) Sheldon, I don’t think everyone ...

EmpDG (joy): What is great.

Ours (joy) Oh, sure. Mmm. I told you, he’s got too many.
Ours (anticipation) And you.




The Effect of Modeling Negative Emotions

e Results comparing three settings with
the percentage of times one model is

considered the best when eliciting Settingl Setting? Setting 3 Tic

different positive emotions.

Anticipation 47 32 19 02
 Setting 1: modeling all emotions in Joy 55 215 215 .02
pretraining and fine-tuning. Trust .54 17 27 .02
* Setting 2: modeling all emotions in All 51 25 22 02
pretraining, fine-tuning with only positive
emotions.

» Setting 3: modeling only positive
emotions in pretraining and fine-tuning.

* Using all emotions in pretraining and
finetuning produces the best performance
in eliciting positive emotions.



Conclusions and Future Directions

* Using all emotions in pretraining and finetuning produces the best performance in eliciting positive
emotions.

* Results show the advantage of using a latent variable for modeling rich emotions, compared to hard-
coding one emotion in a multi-encoder model.

* The effectiveness of our model in pretraining.
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Thank you! Questions?



