Representing Intonational Variation

Julia Hirschberg CS 4706

Today

- How can we represent meaningful speech variation so we can compare utterances? assign in TTS?
 - Expanded vs. compressed pitch range?
 - Louder vs. softer speech?
 - Faster vs. slower speech?
 - Differences in intonational prominence?
 - Differences in intonational phrasing?
 - Differences in pitch contours?

Joseph Steele, 1775

Language Learning Approaches

- A simpler approach
 - / IS it var INteresting /
 - / d'you feel ^ ANGry? /
 - / WHAT'S the > PROBlem? / (McCarthy, 1991:106)
- How much variation do we need to capture?
 - How detailed?
 - Continuous or categorical features?
 - If categorical, what are the possible classes?

How Do We Decide?

- •Auditory:
 - Language teachers: what representations can learners understand
- •Acoustic:
 - Examine the speech signal for critical vs. accidental variation
- •Experimental approaches
 - Identify potential meaningful variation
 - Design production or perception studies to test
 - E.g. what does a contour *mean*?

Intonation Models

- Superpositional models (Fujisaki 1983, Möbius et al. 1993): acoustic/physiological
- Linear or Tone sequence models
 - British school (Kingdon '58, O'Connor & Arnold '73, Cruttenden '97): based on auditory analysis
 - American School (Pierrehumbert '80, ToBI): mainly acoustic analysis
 - Dutch school ('t Hart, Collier and Cohen 1990): perceptual data

Superpositional models

- Pitch pattern of intonation modeled with two components: phrase component and accent component.
- Phrase has basic shape, and pitch movements for individual accents are superimposed over basic shape:

Apples, oranges and tomatoes

Good for modeling utterance-level trends

- Declination: downtrend in f0 over the course of an utterance
- Successful in speech synthesis for languages like Japanese (little variation in accent type, e.g.)

Disadvantages

- Disadvantages
 - Too rigid: All contours must be modeled with an accent and a phrase component
 - Many SAE contours cannot be captured easily
 - Cannot distinguish prominence types
 - Cannot capture differences in phrase endings

- No account of different accent types, or variations in phrase endings
- No notation system which allows users to share observations from large speech corpora or to compare contours
- Used primarily for synthesis

Tone Sequence Models

- Intonation generated from sequences of categorically different, phonologically distinctive tones
- Basic unit of intonational description: intonation phrase (tone unit, breath group)
 - Delimited by pauses, phrase-final lengthening, pitch
- Syllables may be stressed or accented
 - Accent aligned with primary stress -- telephone
 - Indicated by F0, duration, intensity, voice quality

Types of Tone-sequence Models

An example

There's a point where you have to clean it and I think it's horrible... 2/20/2011 13

Intonation Phrases

- Internal structure
 - Determined by location of accents in an IP
 - Each accent defines the **beginning** of a prosodic constituent

British School

Six nuclear choices in English

2/20/2011

The American School

- American school-type models make a distinction between accents (what makes a particular word prominent) and boundary tones (how a phrase ends)
- Autosegmental metrical or two-tone models
- Only two tones, which may be combined
 - -H = high target
 - -L = low target

Pierrehumbert 1980

 Contours = pitch accents, phrase accents, boundary tones

Price, Ostendorf et al

- Break indices: degree of juncture between words
- $0 \rightarrow 8$ (none to 'a lot')
 - What I'd like is a nice roast beef sandwich.

To(nes and)B(reak)I(ndices)

- Developed by prosody researchers in four meetings over 1991-94
- Putting Pierrehumbert '80 and Price, Ostendorf, et al together
- Goals:
 - devise common labeling scheme for Standard American English that is robust and reliable
 - promote collection of large, prosodically labeled, shareable corpora

- ToBI standards also proposed for Japanese, German, Italian, Spanish, British and Australian English,....
- Minimal ToBI transcription:
 - Recording of speech
 - F0 contour
 - ToBI tiers:
 - orthographic tier: words
 - break-index tier: degrees of junction (Price et al '89)
 - tonal tier: pitch accents, phrase accents, boundary tones (Pierrehumbert '80)
 - miscellaneous tier: disfluencies, non-speech sounds, etc.

Sample ToBI Labeling

- Online training material, available at: <u>http://anita.simmons.edu/~tobi/index.html</u>
- Evaluation
 - Good inter-labeler reliability for expert and naive labelers: 88% agreement on presence/absence of tonal category, 81% agreement on category label, 91% agreement on break indices to within 1 level (Silverman et al. '92,Pitrelli et al '94)

Pitch Accent/Prominence in ToBI

- Which items are made intonationally prominent and how: tonal targets/levels not movement
- Accent type:
- H* simple high(declarative)
- $(-L^*)$ simple low (ynq)
 - -L*+H scooped, late rise (uncertainty/
- incredulity)
 - -L+H* early rise to stress (contrastive focus)
- 4 H+!H* fall onto stress (implied familiarity)

•Downstepped accents:

€!H*,

- **ۥL+!H***,
- **€**•L*+!H

•Degree of prominence:

within a phrase: HiF0 (~nuclear accent)across phrases ??

Prosodic Phrasing in ToBI

- 'Levels' of phrasing:
 - intermediate phrase: one or more pitch accents plus a phrase accent, H-
 - intonational phrase: 1 or more intermediate
 phrases + boundary tone, H% & or L%
- ToBI break-index tier
 - -0 no word boundary
 - -1 word boundary

- -2 strong juncture with no tonal markings
- -3 intermediate phrase boundary
- -4 intonational phrase boundary

• <u>ToBI exercises</u>

Next Class

• Predicting prosodic assignments from text