
Project 1 – Limited Domain TTS
using Festival

CS4706 Spring 2010

1

Project 1

• Build a limited domain (LDOM) TTS system
– Festival TTS

• http://www.festvox.org/

• Uses scheme as scripting language

• Installed (with scripts) on speech lab linux machines

• Do in pairs (or on your own)
– Send us your teams by email by 2/12 (Friday)

• Sign up for times in speech lab ASAP
– http://www.cs.columbia.edu/~speech/sign-up/index.php

– CS linux account required
• http://www.cs.columbia.edu/crf/

2

http://www.festvox.org/
http://www.cs.columbia.edu/~speech/sign-up/index.php
http://www.cs.columbia.edu/~speech/sign-up/index.php
http://www.cs.columbia.edu/~speech/sign-up/index.php
http://www.cs.columbia.edu/crf/
http://www.cs.columbia.edu/crf/
http://www.cs.columbia.edu/crf/

Limited Domain TTS project

• Part A (easy)
– Set up and test a first small TTS system (talking clock) using

Festival-provided scripts

• Part B&C
– Design and implement your own LDOM TTS
– Choice of domains
– Use some of the same procedures as in Part A

– Note: these slides are an overview of the assignment. See
full instructions at:
http://www.cs.columbia.edu/~julia/courses/CS4706/hw/P
ROJ1.htm

3

http://www.cs.columbia.edu/~julia/courses/CS4706/hw/PROJ1.htm
http://www.cs.columbia.edu/~julia/courses/CS4706/hw/PROJ1.htm

Outline – Creating your TTS

• Create utterance list (text) to specify the words and
phrases in your domain as said in context (to capture
coarticulation effects).

• Record these utterances.
• For all recorded utterances, Festival aligns utterance

audio to utterance text.
• Festival generates voice synthesizer for your domain

(to cover words in your utterance list).
• Run script which translates an input code to the new

utterance text to be synthesized. New utterance must
used words found in utterance list.

• Synthesize the given new utterance.

4

Part A – environment variables

– Add these lines to your ~/.bashrc file:
• export PATH=/proj/speech/tools/festival/festival/bin:$PATH
• export PATH=/proj/speech/tools/festival/speech_tools/bin:$PATH
• export FESTVOXDIR=/proj/speech/tools/festival/festvox
• export ESTDIR=/proj/speech/tools/festival/speech_tools

– Note: you have to log out and back in for the changes
to the ~/.bashrc file to take effect.
• Or do source ~/.bashrc in a running shell
• Check by running echo $FESTVOXDIR. The value specified

above should be displayed.

– Festival documentation on the “telling the time”
example:
• http://festvox.org/bsv/x1003.html

5

http://festvox.org/bsv/x1003.html

Part A – build directories

• Create directory and cd to it
• mkdir /proj/speech/users/cs4706/USERNAME
• cd /proj/speech/users/cs4706/USERNAME
• mkdir time
• cd time

• Set-up directory
• $FESTVOXDIR/src/ldom/setup_ldom SLP time xyz

• These two files (among others) are created:
• etc/time.data, contains a set of utterances covering the possible word and

phrase choices in the domain
• festvox/SLP_time_xyz.scm, defines several functions (in Scheme) to convert a

time like 07:57 into an utterance like The time is now, a little after five to eight,
in the morning.

• For part A of the homework you do not need to edit these files, but
you will in Parts B and C.

6

Part A - build prompts and utterances

• Generate prompts from utterance list (outputs to prompt-wav/
subdir)

• festival -b festvox/build_ldom.scm '(build_prompts "etc/time.data")’

• Record from prompts. The system will prompt you to say one
utterance at a time. (see recording tips)

• bin/prompt_them etc/time.data
• Note: Recorded files go to wav/ subdirectory

• Create label files aligning utterance text to recorded utterances
(outputs to lab/ subdir)

• bin/make_labs prompt-wav/*.wav

• Build utterance structure
• festival -b festvox/build_ldom.scm '(build_utts "etc/time.data")’

• Copy utterance list text file (used in next processing steps)
• cp etc/time.data etc/txt.done.data

7

Part A – build and run speech
synthesizer

• Extract pitchmarks and fix them (outputs to pm/ subdir)
• bin/make_pm_wave wav/*.wav
• bin/make_pm_fix pm/*.pm

• Power normalization (outputs to wavn/ subdir)
• bin/simple_powernormalize wav/*.wav

• MCEP vectors (outputs to mcep/ subdir)
• bin/make_mcep wav/*.wav

• Built synthesizer
• festival -b festvox/build_ldom.scm '(build_clunits "etc/time.data”)’
• Note: it can only produce words that you have specifically given it in your

utterance list.

• Run it
• festival festvox/SLP_time_xyz_ldom.scm '(voice_SLP_time_xyz_ldom)’
• (saytime)
• (saythistime "07:57")
• (saythistime "14:22")

8

Part A – final output

• Generate three wav files using your TTS as follows:

– cd /proj/speech/users/cs4706/USERNAME/time 
– Festival 
– (load "festvox/SLP_time_xyz_ldom.scm") (voice_SLP_time_xyz_ldom) 
– (Parameter.set 'Audio_Method 'Audio_Command) (Parameter.set 'Audio_Required_Rate

16000) (Parameter.set 'Audio_Required_Format 'wav) 
– (Parameter.set 'Audio_Command "cp $FILE time1.wav") (saytime) 
– (Parameter.set 'Audio_Command "cp $FILE time2.wav") (saythistime "07:57") 
– (Parameter.set 'Audio_Command "cp $FILE time3.wav") (saythistime "14:22")

9

Part B: Choosing a limited domain

• TTS system with a limited domain of your choice.
• Phone numbers

• Dates

• Weather report

– Eg {tomorrow’s} weather in {new york} will be {cloudy} with
{heavy winds} from {the north}, with a {temperature of 43
degrees}.

• Street addresses

• Stock market quotes

• Other (ask TA first)

• At least three degrees of freedom

10

Example: Time

• In the talking clock the input is a string of the form
– HH:MM,
and the output is a sentence of the form
– The time is now, EXACTNESS MINUTE INFO(, in the DAYPART), where:

• EXACTNESS = {exactly, just after, a little after, almost}
• MINUTE = {-, five past, ten past, quarter past, twenty past, twenty-five past,

half past, twenty-five to, twenty to, quarter to, ten to, five to}
• INFO = {one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve,

midnight}
• DAYPART = {morning, afternoon, evening}

• For example
– 07:57 => The time is now, a little after five to eight, in the morning

• Four degrees of freedom (EXACTNESS, MINUTE, INFO, DAYPART).
– Number of possible sentences is approximately 4 x 12 x 12 x 2 = 1152.

11

Part B – preparing your limited domain TTS

• Create and set up directory
• mkdir /proj/speech/users/cs4706/USERNAME/partc
• cd /proj/speech/users/cs4706/USERNAME/partc
• $FESTVOXDIR/src/ldom/setup_ldom SLP TOPIC xyz

• Design prompts
• The talking clock uses the prompts in time/etc/time.data:

(time0001 "The time is now, exactly five past one, in the morning.")
(time0002 "The time is now, just after ten past two, in the morning.")
(time0003 "The time is now, a little after quarter past three, in the

morning.") …

• Now, instead, you will create a similar file for your domain, and
save it as partc/etc/TOPIC.data

• Tips on designing prompts
– http://www.festvox.org/bsv/c941.html#AEN952.

12

http://www.festvox.org/bsv/c941.html
http://www.festvox.org/bsv/c941.html

• Record utterances and build synth as in Part A
• Write a script to transform input code string into an English

sentence for your domain. The script then invokes Festival to
say the English sentence.
– Eg "14:22” => The time is now, a little after twenty past two, in the afternoon.

• We provide a perl script to use as a template.
– http://www.cs.columbia.edu/~julia/courses/CS4706/hw/hw4/tts.pl.txt
– Update the variables $USERNAME and $TOPIC, complete the code where marked, and

define the function generate_sentence, which does the input-output transformation.
– Comment your code thoroughly.
– The rest of the code in this script creates a temporary Festival script and runs it. That

temporary script loads your limited domain and creates a wav file with the resulting
synthesis. You should not need to modify any of this.

• Note: It is also possible to do the transformation part of the
script (input string to English sentence) using Festival’s
Scheme scripting language.
– If you want to do it that way, please check with the TA first.

Part C – completing your limited domain TTS

13

http://www.cs.columbia.edu/~julia/courses/CS4706/hw/hw4/tts.pl.txt

Tips for Recording prompts

• Do not start without testing the microphone! To test it, try:
• rec -s test.wav play test.wav
• Or test recording with praat

• Change the settings in the Linux Volume Control (right click on the speaker
in desktop panel) until your recorded speech is clear and loud enough,
with as little background noise as possible. Watch out for clipping!

• Try to make the recordings in a silent environment.
– Cooperate and take turns In the lab

• Make sure that your microphone is not directly in front of your mouth, to
avoid noise produced by your breath.

• The script records all prompts in one sitting. If you make mistakes and
want to re-record a few specific prompts, you don’t need to run the script
again. See how in hw assignment page.

• For audio setup problems (eg can’t record anything), ask the speech lab
monitor for help.

14

Submission

You must follow these conventions exactly.

• Create a directory YourUni-project1 (e.g., rc2447-project1) with three
subdirectories: parta, partb, and partc

• For Part A, save the following files in parta subdirectory:
– save the three wave files: time1.wav, time2.wav, and time3.wav
– Make sure all your files under /proj/speech/users/cs4706/USERNAME have

read permissions for everybody, and also exec permissions in the case of
directories

• For Part B, save the following files in partb subdirectory:
– A text document specifying:

• a description of your limited domain (5 sentences at most)
• the definition of the input and output of your TTS system, specifying the degrees of

freedom and the number of possible sentences that could be generated.

– The file TOPIC.data which contains the prompts you have designed.

15

Submission continued

• For Part C, save the following files in partc subfolder:
– A plain text document (not Word, PDF, etc.) specifying:

• path and name of your Perl script.
• an example of how to run your perl script (must work on speech lab machines).
• a description of any changes you made to your design in Part B, and an explanation of

why you think they were necessary.
• a description of any special features of your system, e.g. of your grammar, domain

coverage, which you think are particularly interesting or sophisticated.
• a paragraph or two on what it would require to turn your TTS system into a real

application in your domain and the difficulties you might encounter in doing so.

– A shell script sample.sh that generates three wav files (from three different
inputs you choose). Given three inputs, this script should generate a wav file
for each (three in total). Choose inputs that best show off your system.

– Do not submit any wav files for this part

• Test your scripts fully before submission (on a speech-lab machine). If
your script doesn’t work, you will lose lots of points. We won’t debug your
code.

16

Script file

The script should look like this:  #!/bin/bash  # path and name of the tts script
(**update**) SCRIPTDIR=/proj/speech/users/cs4706/USERNAME SCRIPTNAME=t
ts.pl  # the resulting wav files are saved in the present directory
 DESTDIR=`pwd`  # generate a wav file for input #a $SCRIPTDIR/$SCRIPTNAME
"03:39" $DESTDIR/utt1a.wav  # generate a wav file for input
#b $SCRIPTDIR/$SCRIPTNAME "14:47" $DESTDIR/utt1b.wav  # generate a wav
file for input #c $SCRIPTDIR/$SCRIPTNAME "23:55" $DESTDIR/utt1c.wav

17

Summary

• Get started early
– Need CS Linux account

• Sign up for time in speech lab
• Design and implement your domain & TTS

• Design domain and prompts
• Record prompts carefully

– Check audio before recording

• Experiment with different prompts and grammars to see
what works best. You don’t have to stick to your initial plan.

• Follow submission instructions
– Double check (on speech-lab machines) that your

scripts all work.

18

