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Slides adapted from Dan Jurafsky,  and James Martin



Paraphrases on major indices not company 
names

We have limited major indices to three: Dow Jones, 
NASDAQ S&P 500

Using other tools
Keep your approach simple until you have something 
working with patterns only
Only then think about extending with other tools and 
resources. It is not necessary.
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Using an HMM to do POS tagging

A special case of Bayesian inference

Related to the “noisy channel” model used in 
MT, ASR and other applications
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We are given a sentence (an “observation” or 
“sequence of observations”)
◦ Secretariat is expected to race tomorrow

What is the best sequence of tags which 
corresponds to this sequence of observations?

Probabilistic view:
◦ Consider all possible sequences of tags
◦ Choose the tag sequence which is most probable given the 

observation sequence of n words w1…wn.
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Out of all sequences of n tags t1…tn want the 
single tag sequence such that P(t1…tn|w1…wn) is 
highest.

Hat ^ means “our estimate of the best one”

Argmaxx f(x) means “the x such that f(x) is 
maximized”
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This equation is guaranteed to give us the 
best tag sequence

Intuition of Bayesian classification:
◦ Use Bayes rule to transform into a set of other 

probabilities that are easier to compute 
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n



Tag transition probabilities p(ti|ti-1)
◦ Determiners likely to precede adjs and nouns

That/DT flight/NN
The/DT yellow/JJ hat/NN
So we expect P(NN|DT) and P(JJ|DT) to be high
But P(DT|JJ) to be:

◦ Compute P(NN|DT) by counting in a labeled 
corpus:
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Word likelihood probabilities p(wi|ti)
◦ VBZ (3sg Pres verb) likely to be “is”
◦ Compute P(is|VBZ) by counting in a labeled 

corpus:
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Secretariat/NNP is/VBZ expected/VBN to/TO 
race/VB tomorrow/NR
People/NNS continue/VB to/TO inquire/VB
the/DT reason/NN for/IN the/DT race/NN
for/IN outer/JJ space/NN
How do we pick the right tag?
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P(NN|TO) = .00047
P(VB|TO) = .83
P(race|NN) = .00057
P(race|VB) = .00012
P(NR|VB) = .0027
P(NR|NN) = .0012
P(VB|TO)P(NR|VB)P(race|VB) = .00000027
P(NN|TO)P(NR|NN)P(race|NN)=.00000000032
So we (correctly) choose the verb reading,



What we’ve described with these two kinds of 
probabilities is a Hidden Markov Model

Now we will tie this approach into the model

Definitions.
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A weighted finite-state automaton adds 
probabilities to the arcs
◦ The sum of the probabilities leaving any arc must 

sum to one

A Markov chain is a special case of a WFST 
◦ the input sequence uniquely determines which 

states the automaton will go through

Markov chains can’t represent inherently 
ambiguous problems
◦ Assigns probabilities to unambiguous sequences
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a set of states 
◦ Q = q1, q2…qN; the state at time t is qt
Transition probabilities: 
◦ a set of probabilities A = a01a02…an1…ann. 
◦ Each aij represents the probability of transitioning from 

state i to state j
◦ The set of these is the transition probability matrix A

Distinguished start and end states
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aij = P(qt = j | qt−1 = i)   1≤ i, j ≤ N

aij =1;    1≤ i ≤ N
j=1

N

∑



Current state only depends on previous 
state 
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P(qi | q1...qi−1) = P(qi | qi−1)



Instead of start state 

Special initial probability vector π

◦ An initial distribution over probability of start states

Constraints:
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π i = P(q1 = i)   1≤ i ≤ N

π j =1
j=1

N

∑
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What is the probability of 4 consecutive rainy 
days?
Sequence is rainy-rainy-rainy-rainy
I.e., state sequence is 3-3-3-3
P(3,3,3,3) = 
◦ π1a11a11a11a11 = 0.2 x (0.6)3 = 0.0432
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We don’t observe POS tags
◦ We infer them from the words we see

Observed events

Hidden events
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You are a climatologist in the year 2799
Studying global warming
You can’t find any records of the weather in 
New York, NY for summer of 2007
But you find Kathy McKeown’s diary
Which lists how many ice-creams Kathy ate 
every date that summer
Our job: figure out how hot it was
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For Markov chains, the output symbols are 
the same as the states.
◦ See hot weather: we’re in state hot
But in part-of-speech tagging (and other 
things)
◦ The output symbols are words
◦ The hidden states are part-of-speech tags
So we need an extension!
A Hidden Markov Model is an extension of a 
Markov chain in which the input symbols are 
not the same as the states.
This means we don’t know which state we are 
in.
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States Q = q1, q2…qN; 
Observations O= o1, o2…oN; 
◦ Each observation is a symbol from a vocabulary V 

= {v1,v2,…vV}
Transition probabilities
◦ Transition probability matrix A = {aij}

Observation likelihoods
◦ Output probability matrix B={bi(k)}

Special initial probability vector π
π i = P(q1 = i)   1≤ i ≤ N

aij = P(qt = j | qt−1 = i)   1≤ i, j ≤ N

bi(k) = P(Xt = ok | qt = i)   



Some constraints
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π i = P(q1 = i)   1≤ i ≤ N

aij =1;    1≤ i ≤ N
j=1

N

∑

bi(k) =1
k=1

M

∑ π j =1
j=1

N

∑



Markov assumption:

Output-independence assumption
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P(qi | q1...qi−1) = P(qi | qi−1)

P(ot | O1
t−1,q1

t ) = P(ot |qt )



Given
◦ Ice Cream Observation Sequence: 1,2,3,2,2,2,3…

Produce:
◦ Weather Sequence: H,C,H,H,H,C…

9/22/2009 30



9/22/2009 31



Bakis = left-to-right Ergodic = 
fully-connected
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Likelihood: Given an HMM λ = (A,B) and an 
observation sequence O, determine the 
likelihood P(O, λ). 

Decoding: Given an observation sequence O 
and an HMM λ = (A,B), discover the best 
hidden state sequence Q. 

Learning: Given an observation sequence O 
and the set of states in the HMM, learn the 
HMM parameters A and B.
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The best hidden sequence
Weather sequence in the ice cream task
POS sequence given an input sentence

We could use argmax over the probability of 
each possible hidden state sequence
◦ Why not? 
Viterbi algorithm
◦ Dynamic programming algorithm
◦ Uses a dynamic programming trellis

Each trellis cell represents, vt(j), represents the probability 
that the HMM is in state j after seeing the first t 
observations and passing through the most likely state 
sequence
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Slide from Dekang Lin



The value in each cell is computed by taking 
the MAX over all paths that lead to this cell. 

An extension of a path from state i at time t-
1 is computed by multiplying:
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Forward algorithm

Exactly like the viterbi algorithm, except
◦ To compute the probability of a state, sum the 

probabilities from each path
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Look at a confusion matrix

See what errors are causing problems
◦ Noun (NN) vs ProperNoun (NN) vs Adj (JJ)
◦ Adverb (RB) vs Prep (IN) vs Noun (NN)
◦ Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)
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